跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡孟廷
Meng-ting Tsai
論文名稱: 可繞式小型偶極天線之研製
Design and Analysis of Flexible Zigzag Dipole Antennas
指導教授: 凃文化
Wen-hua Tu
陳念偉
Nan-wei Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 82
中文關鍵詞: 小型天線可繞式天線軟性印刷電路
外文關鍵詞: zigzag, flexible, liquid crystal polymer, FPCB
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製可繞式小型平面(planar)偶極天線,天線設計於軟性印刷電路板
    (Flexible Printed Circuit Board,FPCB)上,此類基板具質量輕、板厚薄,及高可繞之特性,天線結構上採用zigzag 之曲折設計達到小型化之目的。所設計之天線可置於硬式聚氨酯之模具中,實現平面、拋物面彎曲、圓柱彎曲、橢圓柱彎曲等型式之可繞天線,論文中針對可繞天線之輻射特性進行模擬分析與比較,藉以瞭解zigzag 天線基板彎曲時所產生之特性變異。模擬結果經由天線實作量測驗證,模擬與量測結果發現,天線基板彎曲時造成操作頻率與輻射效率下降,其中
    輻射效率下降主要歸因於天線因彎曲而增加結構間之電容耦合,進而造成電磁能
    量不易輻射而侷限於結構中; 此外,電容耦合亦造成天線等效共振電路中之電容
    增加,進而造成天線共振頻率下降。在輻射場型方面,天線在基板彎曲時造成指
    向性下降,尤其當天線基板彎曲成圓柱與橢圓柱時,輻射場型的零點變得不明顯,
    天線之輻射特性近似於點源輻射。所設計之可繞式天線可應用於醫療用植入器
    (medical implant device)、可穿戴式電腦系統(wearable computer system),以及智慧型衣料(smart clothing)的研發


    The design and analysis of a planar, compact, and flexible zigzag dipole are presented. A flexible printed circuit board (FPCB), which is light, thin, and bendable,is exploited for antenna substrate design. The zigzag structure is used to realize a compact antenna design. The flexible zigzag dipole structure can be deformed into planar, parabolic, cylindrical, and elliptical forms through the molds made of rigid polyurethane. In this thesis, the parametric study regarding the impact of the structure
    deformation on the antenna radiation characteristics are presented, and the simulated results are verified by experimental demonstration. The simulated and experimental
    results show that the operating frequency and the radiation efficiency decrease owing to the structure deformation. Specifically, the decrease of the radiation efficiency is
    mainly attributed to the increase of capacitive coupling between the two zigzagged arms of the dipole, which leads to poor radiation from the antenna structure. In addition, the increase of the capacitive coupling corresponding to the increase of the capacitance in the antenna equivalent lumped circuit. Consequently, the resonant frequency of the dipole is down shifted. As for the radiation patterns, the structure deformation leads to the decrease of the antenna directivity. Technically, the deformation, especially for the cases in cylindrical, and elliptical forms, appears to
    convert the original directional radiation source into the omnidirectional one. The iii propose antenna can find applications in medical implant devices, wearable computer
    systems, and smart clothing.

    摘要...................................................... i Abstract................................................. ii 致謝..................................................... iv 圖目錄................................................... vii 表目錄 .................................................... x 第一章 緒論................................................ 1 1.1 研究動與目的............................................ 1 1.2 論文提要............................................... 6 第二章 傳輸線與線性雙極天線的原理與設計.......................... 7 2.1 共面傳輸線與共面帶線結構 ................................. 7 2.2 天線原理與設計 ......................................... 9 2.3 zigzag 偶極天線的設計原理............................... 16 第三章 可繞式小型偶極天線的設計與分析.......................... 20 3.1 zigzag 小型天線設計 ................................... 20 3.2 zigzag 小型天線模擬與分析 .............................. 23 3.2.1 彎折金屬線長的模擬與分析 .............................. 23 3.2.2 彎折金屬線寬的模擬與分析 .............................. 26 3.2.3 彎折金屬夾角的模擬與分析 .............................. 30 3.2.4 阻抗匹配 ........................................... 34 第四章 可繞式小型偶極天線的模擬與量測 ......................... 41 4.1 反射損耗與輻射場型的模擬與量測 ........................... 41 4.1.1 平面型式的反射損耗與輻射場型 ........................... 41 4.1.2 拋物面型式的反射損耗與輻射場型 ......................... 52 4.1.2 圓柱型式的反射損耗與輻射場型 ........................... 59 4.1.4 橢圓柱型式的反射損耗與輻射場型 ......................... 66 第五章 結論與未來研究方向 ................................... 75 參考文獻 ................................................. 76 附錄 .................................................... 79

    [1] Lars Joseffson, and Patrik Persson, Conformal Array Antenna Theory and Design.
    New York: John Wiley & Sons, 2006.
    [2] Online information available at http://blog.sina.com.tw/sandychang/article.php?pbgid=40436&entryid=576749
    [3] Online information available at
    http://www.themajorlearn.info/Software/RFID.html
    [4] J. J. Ockerman, L. J. Najjar, J. C. Thompson, C. J. Treanor, and F. D. Atkinson,“FAST: A Research Paradigm for Educational Performance Support Systems,”
    Educational Multimedia and Hypermedia 1996, pp. 545-550.
    [5] Online information available at
    http://radio-weblogs.com/0105910/2003/10/13.html
    [6] G. DeJean, R. Bairavasubramanian, D. Thompson, G. E. Ponchak, M. M. Tentzeris, and J. Papapolymerou,“Liquid Crystal Polymer (LCP): A New Organic
    Material for the Development of Multilayer Dual-Frequency/Dual-Polarization
    Flexible Antenna Arrays,”IEEE Antennas and Wireless Propagation Letters, vol.4, pp.22-26, Jun. 2006.
    [7] Xingyu Zhang, and Anping Zhao,“Flexible Compact Planar Inverted-F Antenna for GSM/DCS/PCS Triple-Band Applications,”in 8th International Symposium Antennas, Propagation and EM Theory, Kunming, Yunnan, China, 2008, pp.15-18.
    [8] H. Furuya, N. Guan, and K. Ito,“A Basic Study on a Flexible Antenna for Wireless LAN of 2.4/5 GHz Application,”in International Workshop Antenna
    Technology: Small Antennas and Novel Metamaterials, 2008, Chiba, Japan, pp. 526-529.
    [9] Hyung Kuk Yoon, Woo Suk Kang, Young Joong Yoon, Cheon-Hee Lee,“A Flexible UWB Antenna Attachable to Various Kinds of Materials,”in IEEE 2007 International Conference Ultra-Wideband, Singapore, pp. 204-209.
    [10] C. Cibin, P. Leuchtmann, M. Gimersky, R. Vahldieck, S. Moscibroda,“AFlexible Wearable Antenna,”in IEEE 2004 Antennas and Propagation Society International Symposium, vol. 4, pp. 3589-3592.
    [11] G.Y. Chen, J. S. Sun,“Design of Flexible Printed Antenna,”Electronics Letters, vol. 40, no. 17, pp. 1034-1035, Aug. 2004.
    [12] A. Galehdar, D.V. Thiel,“Flexible, Light-Weight Antenna at 2.4GHz for Athlete Clothing,”in IEEE 2007 Antennas and Propagation Society International Symposium, pp. 4160-4163.
    [13] Changren Zhou, Zhengji Yi,“Blood-Compatibility of Polyurethane/Liquid Crystal Composite Membranes,”Biomaterials, Elsevier, vol.20, pp. 2093-2099, Apr. 1999.
    [14] Rainee N. Simons, Coplanar Waveguide Circuits, Components, and Systems, New York: John Wiley & Sons, 2001.
    [15] K. Goverdhanam, R.N. Simons, L.P.B Katehi,“Coplanar Stripline Components for High Frequency Applications,”IEEE Transaction on Microwave Theory and Techniques, vol. 45, no. 10, pp. 1193-1196, Oct. 1997.
    [16] R.N. Simons, N.I. Dib, L.P.B. Katehi,“Modeling of Coplanar Stripline Discontinuities,”IEEE Transaction on Microwave Theory and Techniques, May 1996, vol. 44, no. 5, pp. 711-716.
    [17] H.A. Wheeler,“Small Antennas,”IEEE Transactions on Antennas and Propagation, vol. ap-23, no. 4, pp. 462-469, Jul. 1975.
    [18] H.A. Wheeler,“The Radiansphere around a Small Antennas,”IRE Proc., vol. 47, pp. 1325-1331, Aug. 1959.
    [19] Kraus Marhefka, Antennas For All Applications. New York: Mc Graw Hill, 2003.
    [20] H. Nakano, H. Tagami, A. Yoshizawa, J. Yamauchi,“Shortening Ratios of Modified Dipole Antennas,”IEEE Transactions on Antennas and Propagation, vol. ap-32, no. 4, pp. 385-386, April 1984.
    [21] R.H. MacPhie, S.K. Darbha,“The Input Impedance of a Thin Dipole withSinusoidal Surface Current Distribution by the Poynting Vector Method,”IEEE Transactions on Antennas and Propagation, vol. 43, no. 11, pp. 1336-1339, Nov. 1995.
    [22] 聚氨酯硬泡CFC-11 替代技術手冊, 中華人民共和國國家環保總局對外經濟
    合作領導小組辦公室, 聯合國工業發展組織, 北京華塑貿易公司, 2002 年8 月.

    QR CODE
    :::