跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王謀賢
Mou-Sian Wang
論文名稱: 砷化鎵光子晶體共振腔研究
The research of GaAs photonic crystal resonator
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 93
語文別: 中文
論文頁數: 82
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 模擬上運用兩種方式,計算品質因子。在二維結構,利用能量在缺陷中衰減,藉由計算衰減時間,得出品質因子,三維的結構則是根據power的流失與儲存在結構能量的比率,求出三維結構的品質因子,利用這兩種方式,可得我們所設計三個縮小外擴空氣洞的結構,有極高的品質因子與能量集中在最小的有效體積上,且在此我們已經成功製作並量測出三個縮小外擴結構的砷化鎵光子晶體雷射。


    目 錄 摘 要……………………………………………. Ⅰ 感 謝……………………………………………. Ⅱ 目 錄……………………………………………. Ⅲ 圖例說明……………………………………………. Ⅴ 表列說明……………………………………………. Ⅹ 第一章 緒論 1-1 光子晶體的簡介…………………………………..1 1-2 光子晶體雷射發展與研究動機…………………..5 第二章 光子晶體結構計算方法 2-1 有限時域差分法…………………………………..7 2-2 平面波展開法……………………...…………….16 第三章 光子晶體共振腔特性計算 3-1 有效折射指數………………………………...….18 3-2 二維光子晶體共振腔之品質因子 3-2-1 二維結構之品質因子………………………...……21 3-2-2 二維光子晶體模擬結構一………...………………23 3-2-3 二維光子晶體模擬結構二……………...…………28 3-2-4 二維光子晶體共振腔之品質因子結論……...……34 3-3 三維光子晶體共振腔之品質因子 3-3-1 三維結構之品質因子…………………………...…35 3-3-2 三維光子晶體模擬結構一…………………...……37 3-3-3 三維光子晶體模擬結構二…………...……………41 3-3-4 三維光子晶體共振腔之品質因子結論………...…44 3-4 光子晶體共振腔之光侷限………...…………….45 第四章 光子晶體雷射能量集中探討 4-1 前言……………………...……………………….50 4-2 費米黃金定律Fermi golden rule…………….....51 4-3 Purcell factor………………………….……........55 4-4 結論………………………………...………..…...59 第五章 光子晶體雷射製作 5-1 製作光子晶體雷射結構……………………...….60 5-2 量測系統……………………………...………….63 5-3 量測結論……………………………...………….66 第六章 砷化鎵光子晶體共振腔結論………………..67 Reference………………………………………...........69 附錄A…………………………………………………73 附錄B………………………………………................79

    Reference
    [1] Eli Yablonovitch, ‘Inhibited Spontaneous Emission in Solid-StatePhysics and Electronics,’Phys. Rev. Lett. 58, 2059, 1987
    [2] Sajeev John, ‘Strong localization of photons in certain dielectric
    superlattices,’ Phys. Rev. Lett. 58, 2486, 1987
    [3] J. D. Joannopoulos, ‘Photonic Crystals-Molding the Flow of
    Light,’ Princeton University Press, 41, William Street, Princeton,
    New Jersey 08540, p. 6, 1995
    [4] http://www.lostseaopals.com.au/opals/index.asp
    [5] L. P. Biro et al, Phys. Rev. E, 67, 021907, 2003
    [6] Barrett Comiskey, J. D. Albert, Nature, vol. 394, 253, 1998
    [7] O. Painter, ‘Two-Dimensional Photonic Band-Gap Defect Mode
    Laser,’Science,284, 1819, 1999
    [8] Jeong-Ki Hwang , ‘Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54?m,’
    Appl. Phys. Lett., 76, 2982, 2000
    [9] J. K. Hwang, ‘Continuous Room-Temperature Operation of Optically Pumped Two-Dimensional Photonic Crystal Lasers at 1.6?m,’ IEEE
    Phot. Tech. Lett., 12, 1295, 2000
    [10] Hong-Gyu Park, ‘Nondegenerate monopole-mode two-dimensional
    photonic band gap laser,’ Phys. Rev. Lett., 79, 3032, 2001
    [11] Hong-Gyu Park, ‘Characteristics of Modified Single-Defect
    Two-Dimensional Photonic crystal Lasers’ IEEE J. Quantum
    Electro.,38, 1353, 2002
    [12] Marko Loncar, ‘Low-threshold photonic crystal laser,’ Appl. Phys.
    Lett., 81, 2680, 2000
    [13] C. Monat, ‘Two-dimensional hexagonal-shaped microcavities
    formed in a two-dimensional photonic crystal on an InP
    membrane,’ J. Appl. Phys., 93, 23, 2003
    [14] S. David, ‘Two-dimensional photonic crystals with Ge/Si
    self-assembled islands,’ Appl. Phys. Lett., 83, 2509, 2003
    [15] Tomoyuki Yoshie, ‘Optical characterization of two-dimensional
    photonic crystal cavities with indium arsenide quantum dot
    emitters,’ Appl. Phys. Lett., 79, 114, 2001
    [16] Dae-Sung Song, ‘Single-fundamental-mode photonic-crystal
    vertical-cavity surface-emitting lases,’ Appl. Phys. Lett., 80, 3901,
    2002
    [17] O. Painter, ‘Defect modes of a two-dimensional photonic crystal in
    an optically thin dielectric slab,’ J. Opt. Soc. Am. B, 16, 275, 1999
    [18] Eiji Miyai, ‘Quality factor for localized defect modes in a photonic
    crystal slab upon a low-index dielectric substrate,’ Opt. Lett., 26,
    740, 2001
    [19] Han-Youl, ‘Square-lattice photonic band-gap single-cell laser
    operating in the lowest-order whispering gallery mode,’ Appl.
    Phys. Lett., 80, 3883, 2002
    [20] K. Hennessy, ‘Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,’ Appl. Phys. Lett., 83, 3650,
    2003
    [21] Marko Loncar, ‘Low-threshold photonic crystal laser,’ Appl. Phys.
    Lett., 81, 2680, 2002
    [22] O. J. Painter, ‘Room Temperature Photonic Crystal Defect Lasers at
    Near-Infrared Wavelengths in InGaAsP,’ J. Ligh. Tech., 17, 2082,
    1999
    [23] Se-Heon Kim, ‘Two-dimensional photonic crystal hexagonal
    waveguide ring laser,’ Appl. Phys. Lett., 81, 2499, 2002
    [24] Se-Heon Kim, ‘Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,’ J. Appl. Phys., 95, 411, 2004
    [25] K.S. Yee, ‘Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,’ IEEE Trans.
    Antennas Propag. , 14, 302, 1966
    [26] K. Kawano, ‘Introduction to Optical Waveguide Analysis:Solving
    Maxwell’s Equations and the Schrödinger Equation,’ T. Kiton,
    (WILEY, 2001)
    [27] J. P. Berenger, ‘A Perfectly Matched Layer for the Absorption of
    Electromagnetic Waves,’ J. Comput. Phys. , 114, 185 ,1994
    [28] K. Sakoda, ‘Optic Properties of Photonic Crystals,’ (Springer,
    2001)
    [29] Chares Kittel, ‘Introduction to Solid State Physic’.
    [30] T. Ochiai, ‘Dispersion relation and optical transmittance of a
    hexagonal photonic crystal slab,’ Phys. Rev. B, 63, 125107, 2001
    [31] Cheolwoo Kim, ‘Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,’ J. Opt. Soc. Am. B, 19,
    1777, 2002
    [32] Han-Youl Ryu, ‘The Smallest Possible Whispering –Gallery –Like Mode in the Square Lattice Photonic-Crystal Slab Single-Defect
    Cavity,’ IEEE J. Quantum Electro., 39, 314, 2003
    [33] I. Alvarado-Rodriguez, ‘Separation of radiation and absorption losses in two-dimensional photonic crystal single defect cavities,’ J.
    Appl. Phys., 92, 6399, 2002
    [34] Kartik Srinivasan, ‘Momentum space design of high-Q photonic
    crystal optical cavities,’ OPTICS EXPRESS, 10, 670, 2002
    [35]Yoshihiro Akahane, ‘High-Q photonic nanocavity in a
    two-dimensional photonic crystal,’ Nature, 425, 944, 2003
    [36] E. M. Purcell, Phys. Rev., 69, 681, 1946
    [37] Serge Haroche, ‘Cavity Quantum electrodynamics,’ Phys. Today,
    24,1989
    [38] Amnon Yariv, ‘Theory and Applications of Quantum Mechanics’
    [39] Ramamurti Shankar, ‘Principles of Quantum Mechanics’
    [40] J. M. Gerard, ‘Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,’ Phys. Rev. Lett., 81, 1110,
    1998
    [41] Misha Boroditsky, ‘Spontaneous Emission Extraction and Purcell Enhancement from Thin-Film 2-D Photonic Crystals,’ J. Light.
    Tech., 17, 2096, 1999
    [42] Jean-Michel Gerard, ‘Strong Purcell Effect for InAs Quantum Boxes in Three-Dimensional Solid-State Microcavities,’ J. Light. Tech., 17,
    2089, 1999
    [43] Frank J. Blatt, ‘MODERN PHYSICS’
    [44]J. S. Foresi, ‘Photonic-bandgap microcavities in Optical
    waveguides,’Nature, 390, 143, 1997
    [45]P. R. Villeneuve, ‘Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,’ IEE Proc.
    -Optoelectron., 145, 384, 1998

    QR CODE
    :::