| 研究生: |
阮純儀 Chun-Yi Wan |
|---|---|
| 論文名稱: |
一氧化氮激態的消光及螢光激發光譜之研究 |
| 指導教授: |
倪簡白
Jan-Bai Nee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] A. S. Kirillov and G. A. Aladjev, Adv. Space. Res. 16, pp. (1)105-(1)108 (1995) (Production and vibrational kinetics of nitric oxide in the disturbed polar thermosphere) [2] R. A. Young and R. L. Sharpless, J. Chem. Phys. 39, pp. 1071-1102 (1963) (Chemiluminescennt Reactions Involving Atomic Oxygen and Nitrogen) [3] T. G. Slanger, Reactions of Small Transient species - Kinetics and Energetics, pp. 272-286 (1983) Edited by A. Fontij and M. A. A. Clyne Chapter 5 Reaction of Electronically Excited Diatomic Molecules [4] T. Hikida, N. Washida, S. Nakajima, S. Yagi, T. Ichimura and Y. Mori , J. Chem. Phys. 63, pp. 5470-5474 (1975) (Fluorescence of nitric oxide excited by the 184.9nm mercury rescence line) [5] J. A. Guest and L. C. Lee, J. Physics(B) 14, pp. 3401-3413 (1981) (Quantitative absorption and fluorescence studies of NO between 106~200 nm) [6] M. Asscher and Y. Haas, J. Chem. Phys. 71, pp. 2724-2726 (1979) (Efficient quenching of nitric oxide Rydberg states: A two photon excitation study) [7] R. Zhang and D. R. Crosely, J. Chem. Phys. 102, pp. 7418-7424 (1995) (Temperature dependent quenching of A2Σ+ NO between 215 and 300K) 80
[8] S. Yagi, T. Hikida and Y. Mori, Chem. Phys. Letters 56, pp. 113-116 (1978) (Lifetime of NO(C2Π,υ’ = 0)) [9] M. Asscher and Y. Hass, J. Chem. Phys. 76 , pp. 2115-2125 (1982) (The quenching mechanism of electrically excited Rydberg states of nitric oxide) [10] Y. Hass and G. D. Greenblatt, J. Phys. Chem. 90, pp. 513-517 (1986) (A charge-transfer model for the quenching of electronically excited nitric oxide. Electron affinity of the quencher) [11] M. C. Drake and J. W. Ratcliffe, J. Chem. Phys. 98, pp. 3850-3865 (1993) (High temperature quenching cross section for nitric oxide laser-induced fluorescence measure) [12] M. R. Furlanetto, J. W. Thoman, J. A. Gray, P. H. Paul and J. L. Durant, J. Chem. Phys. 101, pp. 10452-10457 (1994) (Near-resonant electronic energy transfer in the electronic quenching of NO A2Σ+ by hydrocarbons and ammonia) [13] F. Lahmani, C. Lardeux, Chem. Phys. Letters 81, pp. 531-536 (1981) (Collision-induced relaxation of NO C2Π(υ’=0) and D2Σ+(υ’=0)) [14] W. G. Clark and D. W. Setser, J. Phys. Chem. 84, pp. 2225-2233 (1980) (Energy transfer reaction of N2(A3Σu+). 5. quenching by Hydrogen Halides, Methyl Halldes, and Other Molesules ) [15] T. Imajo, K. Shibuya, K. Obi and I. Tanak, J. Phys. Chem. 90, pp. 6006-6011 (1986) (Energy Transfer and Electronic quenching of the low-lying Rydberg states of NO in NO/N2 Mixtures) [16] H. Okabe, Photochemistry of small molecules (1978) 81
[17] K. P. Huber and M. Vervloet, J. Molecular spectroscopy 129, pp. 1-23 (1988) (Rotation analysis of the b4Σ-
a4Π quartet system) [18] M. J. Brunger, L. Campbell, D. C. Cartwright, A. G. Middleton, B. Mojarrabi and P. J. O. Teubner, J. Phys. B: At. Mol. Opt. Phys. 33, pp. 783-808 (2000) (Electron-impact excitation of Rydberg and valence electronic states of nitric oxide:I. Differential cross section) [19] A. A. Radzig, B. M. Smirnov, Reference Data on Atoms, Molecules, and Ion [20]K. P. Huber and G. Herzberg, Molecular spectra and molecular structure Ⅳ. Constants of diatomic molecules (1979) [21] F. R. Gilmore, J. Quant. Spec. Rad. Trans. 5, pp. 369 (1965) [22] H. M. Lin, M. Seaver, K. Y. Tang, A. E. W. Kinght and C. S. Parmenter, J. Chem. Phys. 70, pp. 5442-5457 (1979) (The role of intermolecular potential well depth in collision-induced s tate change) [23] P. R. R. Langridge-smith, E. Carrasquillo M., and D. H. Levy, J Chem. Phys. 74, pp.6513-6514 (1981) (The direct photodissociation of the van der Waals molecule NO-Ar) [24] K. Tsuji, K. Shibuya, and K. Obi, J Chem. Phys. 100, pp.5441-5447 (1994) (Bound-bound A2Σ+-X2Π transition of NO-Ar van der Waals compleses) [25] B. L. Earl and R. R. Herm, J. Chem. Phys. 60, pp. 4568-4578 (1974) (Photodissociation of NaBr, NaI, and KI vapors and collisional quenching of Na*(32P), K*(42P), and K*(52P) by foreign gases) 82
[26] D. L. Holtermann, E. K. C. Lee and R. Nanes, J. Chem. Phys. 77, pp. 5327-5339 (1982) (Rates of collision-induced electronic relaxation of single rotational levels of SO2(Ã1A2):Quenching mechanism by collision complex formation) [27] A. B. Callear and M. J. Pilling, Trans. Faraday Soc. 66, pp. 1886-1906, (1970) (Fluorescence of Nitric Oxide) [28] T. Hikida and Y. Mori, J. Chem. Phys. 69, pp. 346-349 (1978) (Induced dissociation of NO (B2Π,υ’ = 9) by N2 ) [29] T. Hikida, S. Nakajima, T. Ichimurqa, and Y. Mori, J. Chem. Phys. 65, pp. 1317-1319 (1976) (Relative quenching rates of NO (B2Π,υ’ = 9)) [30] T. Hikida, S. Yagi and Y. Mori, Chem. Phys. 52, pp. 399-404 (1980) (Lifetime studies of NO(A2Σ+,υ’=4), NO(B2Π, υ’=9), and NO (D2Σ+, υ’=0)) [31] O. B. D’Azy, R. López-Delgado and A. Tramer, Chem. Phys. 9, pp. 327-338 (1975) (NO fluorescence decay from low-lying electronic states excited into single vibronic levels with synchrotron radiation) [32] H. Zacharias, J. B. Halpern and K. H. Welge, Chem. Phys. Letters 43, pp. 41-44 (1976) (Two-photon excition fo NO(A2Σ+,υ’=0,1,2) and radiayion lifetime and quenching measurements) [33] G. D. Greenblatt and A. R. Ravishankara, Chem. Phys. Letters 136, pp. 501-505 (1987) (Collisional quenching of NO (A, υ’=0) by various gases ) 83
[34] M. Tamura, P. A. Berg, J. E. Harrington et al., Combustion and Flame 114, pp. 502-514 (1998) (Collisional Quenching of CH(A), OH(A), and NO(A) in Low Pressure Hydrocarbon Flame) [35] R. C. Weast, Ph.D, CRC Handbook of Chemistry and Physics [36] P. W. Atkins, Physical chemistry fourth (1990) [37] K. P. Huber and G. Herzberg, Molecular spectra and molecular structure Ⅲ. Electronic spectra and electronic structure of polyaatomic molecules (1966) [38] G. A. Raiche and D. R. Crosley, J Chem. Phys. 92, pp.5211-5217 (1990) (Temperature dependent quenching of the A2Σ+ and B2Π states of NO) [39] A. Lofthus and P. H. Krupenie, J. Phys. Chem. 6, pp. 113-307 (1977) (The Spectrum of Molecular Nitrogen) N2的位能曲線,pp288。 [40] John R Barker, Progress and problems in atomospheric chemistry (1995) [41] R. N. Compton, P. W. Reinhardt, C. D. Cooper, J. Chem. Phys. 63, pp3821 (1975) (Collision ionization of Na, K, and Cs by CO2, COS, and CS2: Molecular electron affinities) [42] K. shubuya, T. Imajo, K. Obi, and I. Tanaka, J. Phys. Chem. 88, pp1457-1458 (1984) (Formation and quenching of metastable N2 A3Σu+ in the Electronic Relaxation of NO C2Π and D2Σ+ in an NO/N2 Mixture) [43] E. Miescher, J. Chem. Phys. 73, pp 3088-3094 (1980) (Quartet-doublet interaction observed in the emission spectrum of the NO molecular) 84
[44] Ch. Ottinger and A. F. Vilesov, J. Chem. Phys. 100, pp 1805-1814 (1994) (Intramolecular collisional transfer in NO(a4Π
B2Π,b4Σ+):Gateway-type, resonant versus direct, nonresonant mechanisms) [45] M. Yamanishi and K. Hirao, J. Chem. Phys. 108, pp1514-1521 (1998) (Theoretical study of the low-lying electronic states of XeO and XeS) [46] W. B. DeMore etc. Chemical Kinetics and photochemical data for use in stratospheric modeling (1997)