| 研究生: |
林晉毅 Ching-Yi Lin |
|---|---|
| 論文名稱: |
以雷射還原金屬離子逕行線路圖案化於玻璃基板 Metallic Wire Patterning on Glass Substrate by Laser Reduction of Silver Ions |
| 指導教授: | 戴朝義 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 雷射 、圖案化 、金屬離子 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以鎖模之鈦藍寶石飛秒雷射在含有金屬離子的有機高分子材料中,引發銀離子的還原反應以製作出線寬達微米級的連續銀導線,其電阻率約為1.8×10-5 Ω•m ~ 4.3×10-5 Ω•m之間。實驗中改變不同雷射的照射條件,如入射光強度、樣品移動速度,觀察其變化與形成金屬結構之關係。藉由實驗參數組合,可製作出最小線寬為1.5 μm的金屬結構。
此外,本研究嘗試將金屬銀導線製作於軟性基板上,雖然成功地使銀還原於基板上,但礙於軟性基板的表面附著力不佳且耐熱性差,故難以製作出完整的連續銀導線,未來可嘗試表面粗糙化物理性的附著力或透過塗佈接著層獲得具化學性之鍵結,透過改良基板的表面附著力與薄膜中的銀粒子尺寸,以期達到在低溫下製成連續銀導線於軟性基板上。
In this thesis, continuous silver micro-wires were fabricated by femtosecond laser direct writing (FLDW) of polyvinylpyrrolidone (PVP) films containing silver ions. The minimum line width achieved by FLDW is 1.5 μm. Using a solution with relatively higher concentration of silver nitrate, the resistivity of continuous silver wires can be further lowered down to 1.8×10-5 Ω•m.
Attempt of producing silver micro-wires on the flexible substrates was conducted. Although the result shows silver can be reduced on the substrate, the poor heat resistance and surface adherence of the flexible substrate hinder the production of continuous silver wires. Future area of work for improving the production process where surface roughening in combination of smaller silver particle size might lower the manufacturing temperature on flexible substrate effectively.
1. Gundlach, D.J., Organic electronics: Low power, high impact. Nature Materials, 2007. 6(3): p. 173-174.
2. Cañamares, M., et al., Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced raman scattering analysis of dyes. Langmuir, 2007. 23(9): p. 5210-5215.
3. Sun, Y. and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002. 298(5601): p. 2176-2179.
4. Wiley, B., et al., Shape‐controlled synthesis of metal nanostructures: the case of silver. Chemistry–A European Journal, 2005. 11(2): p. 454-463.
5. TekaiaáElhsissen, K., Preparation of colloidal silver dispersions by the polyol process. Part 1—synthesis and characterization. Journal of Materials Chemistry, 1996. 6(4): p. 573-577.
6. Yan, Y., S.-Z. Kang, and J. Mu, Preparation of high quality Ag film from Ag nanoparticles. Applied surface science, 2007. 253(10): p. 4677-4679.
7. Zhang, Z., B. Zhao, and L. Hu, PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. Journal of Solid State Chemistry, 1996. 121(1): p. 105-110.
8. 吳凱第 and 謝宗雍, 奈米銀粒子與光硬化環氧樹脂-銀奈米複合材料之製備及性質研究. 2007.
9. Washio, I., et al., Reduction by the end groups of poly (vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 2006. 18(13): p. 1745-1749.
10. Shin, H.S., et al., Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. Journal of colloid and interface science, 2004. 274(1): p. 89-94.
11. 高振裕, 軟性電子之印刷式奈米材料與元件研究. 清華大學化學工程學系學位論文, 2010: p. 1-211.
12. Silvert, P.-Y., R. Herrera-Urbina, and K. Tekaia-Elhsissen, Preparation of colloidal silver dispersions by the polyol process. Journal of Materials Chemistry, 1997. 7(2): p. 293-299.
13. Mini, L., C. Giaconia, and C. Arnone, Copper patterning on dielectrics by laser writing in liquid solution. Applied physics letters, 1994. 64(25): p. 3404-3406.
14. Muller, H.G., Photothermal formation of copper conductors on multichip module substrates using a Nd: YAG laser. IEEE transactions on components, hybrids, and manufacturing technology, 1993. 16(5): p. 530-535.
15. Göppert‐Mayer, M., Über elementarakte mit zwei quantensprüngen. Annalen der Physik, 1931. 401(3): p. 273-294.
16. Kaiser, W. and C. Garrett, Two-photon excitation in Ca F 2: Eu 2+. Physical review letters, 1961. 7(6): p. 229.
17. Cumpston, B.H., et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 1999. 398(6722): p. 51-54.
18. Tanaka, T., A. Ishikawa, and S. Kawata, Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Applied Physics Letters, 2006. 88(8): p. 081107.
19. Baldacchini, T., et al., Multiphoton laser direct writing of two-dimensional silver structures. Optics express, 2005. 13(4): p. 1275-1280.
20. Maruo, S. and T. Saeki, Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Optics express, 2008. 16(2): p. 1174-1179.
21. Zhou, Z., et al., Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator. Optics Communications, 2009. 282(7): p. 1370-1373.
22. Ko, S.H., et al., All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology, 2007. 18(34): p. 345202.