| 研究生: |
張美雲 Mei-Yun Chang |
|---|---|
| 論文名稱: |
臺灣矽烷市場SCP分析 |
| 指導教授: |
邱俊榮
Jiunn-Rong Chiou 蔡栢昇 Pak-Sing Choi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 產業經濟研究所在職專班 Executive Master of Industrial Economics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 矽烷 、結構–行為–績效 、半導體製程氣體 、供應鏈在地化 |
| 外文關鍵詞: | Silane, Structure–Conduct–Performance, Semiconductor process gases, Supply chain localization |
| 相關次數: | 點閱:224 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採用結構–行為–績效(Structure–Conduct–Performance, SCP)模型統整臺灣矽烷(Silane, SiH₄)市場之因果關係與政策意涵。市場結構上,供給端由少數跨國供應商掌握核心技術、關鍵設備與長期合約(LTA),屬賣方寡占;需求端集中於台積電、聯電等少數晶圓廠。不同純度/等級間替代性弱,加上漫長驗證與嚴格安全合規提升轉換成本,使高純產品門檻與集中度更高。綜合集中度指標顯示市場高度集中(CR4≈70–80%;HHI≈1,800–2,000),與其差別化且雙邊集中的緊密寡占特徵相符。矽烷作為半導體製程氣體,對氣相沉積(CVD)與外延成長(Epitaxy)關鍵製程具有關鍵性。方法上,本文結合官方統計、政策法規與產業報告,並以標準競爭與訂價權指標(如 Lerner 指標)評估競爭態勢,同時分析資本強度與合規成本對投資前置時程與現金流的影響。
於行為面,業者多以多氣體整合與服務外包提升黏著,合作型態以長期合約與策略聯盟為主;訂價上,中低階產品偏向成本加成,高階產品採協議式/價值導向並輔以滲透與差別定價以管理客群與風險。政策環境方面,相較美國《晶片與科學法案》(CHIPS and Science Act)與中國「紅色供應鏈」,臺灣在戰略性材料之政策定位、備援與儲備機制仍待完備;同時中國低價產能外溢擠壓中低階利潤,導致價格兩極化並抑制創新投資。綜合績效遂呈現「高投資、長回收、短期償債壓力」特徵,獲利重心轉向高階產品與整合服務。
綜合前述,本論文提出三層次建議:政策面—納入矽烷及其關聯衍生物為戰略性材料,建構以風險為本的戰略儲備與跨部會協調機制,並透過專區化設置與快速合規通道以縮短投資前置時程;產業面—分階段推動在地化產能、擴大多元原料來源,並配合在岸化供應長約框架、動態需求預警與情境推演以強化供應韌性;能力面—深化產學合作與人才培育,聚焦製程安全、純化與分析量測等關鍵技術。此一組合式策略可同步改善結構、引導行為並提升績效,降低進口依賴與供應中斷風險,進而鞏固臺灣於全球半導體供應鏈之競爭優勢。
This study employs the Structure–Conduct–Performance (SCP) framework to synthesize causal relationships and policy implications in Taiwan’s silane (SiH₄) market. On structure, a small set of multinational suppliers control core technology, critical equipment, and long-term agreements (LTAs), forming a seller-side oligopoly, while demand is concentrated in a few wafer fabs (e.g., TSMC, UMC). Weak substitutability across purity/grade—together with lengthy qualification cycles and stringent safety/compliance requirements—raises switching costs and heightens concentration in high-purity segments. Combined concentration metrics indicate a highly concentrated market (CR4 ≈ 70–80%; HHI ≈ 1,800–2,000), consistent with a differentiated, bilaterally concentrated tight oligopoly. As a process gas, silane is critical to CVD and epitaxy. Methodologically, we integrate official statistics, policy/regulatory sources, and industry reports, and evaluate competition and pricing power using standard indices (e.g., the Lerner index), while analyzing how capital intensity and compliance costs shape pre-investment lead times and cash-flow dynamics.
On conduct, firms enhance stickiness through multi-gas integration and outsourced services, relying chiefly on LTAs and strategic alliances. Pricing is generally cost-plus for low-to-mid grades, whereas high-end products adopt negotiated/value-based approaches, complemented by penetration and price discrimination to manage segments and risk. In the policy environment, compared with the U.S. CHIPS and Science Act and China’s “red supply chain,” Taiwan’s designation, backup, and stockpiling mechanisms for strategic materials remain incomplete. Concurrently, spillovers of low-priced Chinese capacity compress mid- to low-end margins, bifurcating prices and dampening innovation investment. Performance thus exhibits “high investment, long payback, and short-term debt-service pressure,” with profits shifting toward high-end products and integrated services.
Drawing on the above, we propose a three-tier agenda. Policy—designate silane and related derivatives as strategic materials; establish risk-based strategic stockpiles and an inter-agency coordination mechanism; and shorten pre-investment lead times via designated industrial zones and fast-track compliance channels. Industry—phase in localized capacity and broaden diversified feedstock sources, anchored by an onshored long-term supply-agreement framework, and strengthen resilience through demand early-warning and scenario planning. Capability—deepen academia–industry collaboration and talent development, focusing on process safety, purification, and analytical metrology. In combination, these measures can improve market structure, guide firm conduct, and enhance performance, thereby reducing import dependence and disruption risk while consolidating Taiwan’s competitive position in the global semiconductor supply chain.
中文文獻
1.工業技術研究院材料與化工研究所(2014),《矽晶圓製造業資源化應用技術手冊》,工業技術研究院。
2.王文娟(2018),「紅色供應鏈形成環境之探討」,《經濟前瞻》第177期,79–86。
3.行政院環境保護署(2017),「矽-關鍵物料調查報告」,行政院環境保護署。
4.李克駿、李克慧、李明逵(2023),《半導體製程概論》,5版,臺北:全華圖書股份有限公司。
5.杜榮珍(2025),《先進封裝產業分析》,國立中央大學管理學院高階主管企管碩士班碩士論文。
6.林苑卿、楊喻斐(2024),「半導體氣體,台積電先進製程神隊友」、「台積電治軍式洗禮,台特化孵出電晶體上的秘密武器」、「就近服務,亞東氣體斷鏈催化3年擴廠潮」,《財訊雙週刊》第708期,70-89。
7.侯正浩(2014),《以SCP模式分析臺灣太陽能產業》,東吳大學國際經營與貿易學系碩士在職專班碩士論文。
8.洪啟峰、林士淵、李正隆、蔡孟璋(2014),《矽甲烷槽車供應系統安全性研究》(ILOSH103-S318),勞動部職業安全衛生研究所。
9.洪慧芳(2023),《晶片戰爭:矽時代的新賽局,解析地緣政治下全球最關鍵科技的創新、商業模式與臺灣的未來,Chris Miller:CHIP WAR: The Fight for the World’s Most Critical Technology》,臺北,天下雜誌股份有限公司。
10.高長(2019),「中國大陸紅色供應鏈崛起的國際效應」,《遠景基金會季刊》第二十卷第三期,1-58。
11.張勁燕(2012),《電子材料》,4版,臺北:五南圖書出版社有限公司。
12.許文憲(2023),《觸煤提升矽烷反應生成及其製程副產物全回收的系統》(中華民國專利編號 I790420),中華民國智慧財產局。
13.郭文哲(2021),《工業氣體行業在半導體產業的發展與轉型之案例研究–以Air Liquide及Linde為例》,國立陽明交通大學高階主管管理學碩士班碩士論文。
14.陳建志(2021),《工業氣體行業在半導體產業的發展與轉型之案例研究》,國家實驗研究院科技政策研究與資訊中心。
15.黃銘彰、周怡君、翁文馨(2021),《大宗矽甲烷儲存場所防爆特性研究》,勞動部職業安全衛生研究所。
16.經濟部技術處(2023),《臺灣特品年報(上)》,經濟部技術處。
17.蔡雯凌(2021),《半導體材料矽晶圓產業分析》,國立中央大學管理學院高階主管企管碩士論文。
18.蔡榮峰(2021),「後疫情時代美中供應鏈競爭策略分析」,《戰略安全研析》第168期,60-73。
英文文獻
Books and Journals
1.Bain, J. S. (1956) Barriers to New Competition: Their Character and Consequences in Manufacturing Industries Cambridge, MA: Harvard University Press.
2.Mason, E. S. (1939) Price and production policies of large-scale enterprise The American Economic Review, 29(1), 61–74.
3.Porter, M. E. (1979) How competitive forces shape strategy Harvard Business Review, 57(2), 137–145.
4.Scherer, F. M. and Ross, D. (1990) Industrial Market Structure and Economic Performance (3rd ed.) Boston, MA: Houghton Mifflin.
5.Waldman, D. E. and Jensen, E. J. (2019) Industrial Organization: Theory and Practice (5th ed.) New York, NY: Routledge.
Reports and Web Articles
1.Grand View Research (2024) Silane Market Size, Share & Trends Analysis Report Retrieved from https://www.grandviewresearch.com/.
2.MarketsandMarkets (2022) Silane Coupling Agents Market by Type, Application, End-use Industry and Region – Global Forecast to 2026 Retrieved from https://www. marketsandmarkets. com/.
3.MarketsandMarkets (2024) Silane Market by Type, Application, and Region – Global Forecast to 2029 Retrieved from https://www.marketsandmarkets.com/.
4.MarketsandMarkets (2024) Silanes Market by Type (Functional Silanes & Mono/Chloro silanes), Application (Rubber & Plastic, Fiber Treatment, Adhesive & Sealants, Paints & Coatings), End‑use (Building & Constructions, Electrical & Electronics, Automotive) – Global Forecast to 2029 Retrieved from https://www.marketsandmarkets.com/Market-Reports/silanes-market-202415042.html.
5.SNS Insider (2025) Flat Panel Display Market to Reach USD 233.90 billion by 2032, Driven by Innovation and Rising Consumer Demand Globe Newswire Retrieved from https://www.globenewswire.com/news-release/2024/01/09/3007007/0/en/Flat-Panel-Display-Market-to-Reach-USD-233-90-Billion-by-2032-Driven-by-Innovation-and-Rising-Consumer-Demand-Research-by-SNS-Insider.html.
6.The Economist (2022) America Takes on China with a Giant Microchips Bill Retrieved from https://www.economist.com/united-states/2022/07/29/america-takes-on-china-with-a-giant-microchips-bill?utm_source=chatgpt.com.
7.United Nations Economic Commission for Europe (2023) UN Recommendations on The Transport of Dangerous Goods: Model Regulations, Volumes I–II (T50/T75 Portable Tanks) Retrieved from https://unece.org/transport/dangerous-goods/un-model-regulations.
8.United States Congress (2022) CHIPS and Science Act of 2022 (Public Law No. 117–167) Retrieved from https://www.congress.gov/bill/117th-congress/house-bill/4346.