跳到主要內容

簡易檢索 / 詳目顯示

研究生: 潘黎燕兒
PHAN LE YEN NHI
論文名稱: GLUCOSE DETECTION BY NITRIDE-BASED SURFACE-ENHANCED RAMAN SPECTROSCOPY
指導教授: 賴昆佑
Kun-Yu Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 53
中文關鍵詞: 表面增益拉曼散射
外文關鍵詞: glucose detection
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增益拉曼散射(surface-enhanced Raman spectroscopy, SERS)具備極高的辨識度、敏感度,在生醫感測的應用上有很大的潛力。在本研究中,我們以InGaN量子井及金奈米顆粒,製作一種新式的SERS感測結構,應用在細胞培養液裡的葡萄糖感測。我們發現,當金的厚度從40 nm增加到 50 nm、量子井的數量從 0 增加到 3 層後,葡萄糖的SERS強度可提升100倍以上。此結果顯示,量子井可以在磊晶片表面侷限高濃度的共振電子,在雷射的激發下,這些高濃度的電子會與金表面的自由電子共振,因而提升SERS強度。此氮化物SERS感測晶片,可以在細胞培養液裡量測到濃度低達0.5 g/L (2.8x10-3 M)的葡萄糖,在0.5 - 5 g/L ( 2.8x10-2 - 2.8x10-3 M)的濃度範圍裡,葡萄糖的濃度與SERS強度成正比。


    Surface-enhanced Raman spectroscopy (SERS) has become a powerful tool in material and life sciences due to its inherent characteristics, such as fingerprint recognition capabilities and high sensitivity. This work presents a new SERS biosensor substrate design, using InGaN quantum wells (QWs) and gold nanoparticles (Au NPs) for glucose detection in a chemically defined (CD) solution. The SERS intensity of glucose can be enhanced by two orders of magnitude when the Au thickness for NPs was increased from 40 nm to 50 nm, and QW number from 0 to 3. The QWs embedded at shallow depths from the surface allow the SERS substrate to capture electrons and pump them (through laser excitation) to the hot spots, increasing the SERS intensity. This QW-based SERS biosensor can detect the glucose in CD with the concentration down to 0.5 g/L (2.8×〖10〗^(-3) M) and exhibit the linear dynamic response in the range of 0.5-5 g/L (2.8×〖10〗^(-2)-2.8×〖10〗^(-3) M).

    GLUCOSE DETECTION BY NITRIDE-BASED SURFACE-ENHANCED RAMAN SPECTROSCOPY I CHINESE ABSTRACT II ENGLISH ABSTRACT III ACKNOWLEDGMENT IV TABLE OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX EXPLANATION OF ABBREVIATIONS XI CHAPER 1: INTRODUCTION. 1 1.1. Motivation and overview: 1 1.2. Surface-Enhanced Raman Spectroscopy theory (SERS): 3 1.2.1. Mechanism of SERS: 5 1.2.1.1. Charge transfer (CT) mechanism: 5 1.2.1.2. Electromagnetic (EM) enhancement mechanism: 6 1.2.2. Application of SERS in bioscience: 7 1.2.3. Quantum well (QW) and its advantages in SERS: 8 1.3. Glucose solution and CD solvent: 9 1.3.1. Glucose: 9 1.3.2. CD solvent: 10 1.4. SERS substrate in glucose detection: 10 1.4.1. Gold nanoparticles (Au NPs): 10 1.4.2. Glucose detection by SERS substrate: 12 1.5. Research objective: 13 CHAPER 2: EXPERIMENT. 15 2.1. Sample preparation: 15 2.1.1. Quantum wells structure: 15 2.1.2. Double cleansing process: 16 2.1.3. Metal deposition: 16 2.1.4. Annealing process: 18 2.2. Solution preparation: 19 2.3. Measurement: 19 CHAPER 3: RESULTS AND DISCUSSION. 21 3.1. The effect of Au NPs thickness on glucose measurement: 21 3.2. The effect from QW number: 25 3.3. The sensitivity of SERS substrate: 29 CHAPER 4: CONCLUSION AND FUTURE PERSPECTIVE. 32 4.1. Conclusion: 32 4.2. Future Perspective: 32 REFERENCES 34

    [1] Bolaños, K., et al. (2019). "Capping gold nanoparticles with albumin to improve their biomedical properties." International journal of nanomedicine 14: 6387.
    [2] Ceja-Fdez, A., et al. (2014). "Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium." Rsc Advances 4(103): 59233-59241.
    [3] Sooraj, K., et al. (2018). "SERS based detection of glucose with lower concentration than blood glucose level using plasmonic nanoparticle arrays." Applied Surface Science 447: 576-581.
    [4] Wu, Z.-S., et al., Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering. Talanta, 2006. 70(3): p. 533-539.
    [5] Botta, R., A. Rajanikanth, and C. Bansal, Silver nanocluster films for glucose sensing by Surface Enhanced Raman Scattering (SERS). Sensing and bio-sensing research, 2016. 9: p. 13-16.
    [6] Peters, R.F., et al., Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates. JoVE (Journal of Visualized Experiments), 2015(97): p. e52712. [7] Shafer-Peltier, K.E., et al., Toward a glucose biosensor based on surface-enhanced Raman scattering. Journal of the American Chemical Society, 2003. 125(2): p. 588-593.
    [8] Yonzon, C.R., et al., A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Analytical Chemistry, 2004. 76(1): p. 78-85.
    [9] Sun, X. (2021). "Glucose detection through surface-enhanced Raman spectroscopy: a review." Analytica Chimica Acta: 339226.

    [10] Israelsen, N. D., et al. (2015). "Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: an introduction." The Scientific World Journal 2015.
    [11] McNay, G., et al. (2011). "Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications." Applied spectroscopy 65(8): 825-837.
    [12] Zong, C., et al. (2018). "Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges." Chemical reviews 118(10): 4946-4980.
    [13] Sharma, B., et al. (2012). "SERS: Materials, applications, and the future." Materials today 15(1-2): 16-25.
    [14] Syahir, A. (2014). "Label-free photonics biosensor transducing nano-biological events." Journal of Biochemistry, Microbiology and Biotechnology 2(1): 32-38.
    [15] Kumar, S., et al. (2020). Surface-enhanced raman scattering: Introduction and applications. Recent Advances in Nanophotonics-Fundamentals and Applications, IntechOpen London, UK: 1-24.
    [16] Le Ru, E. and P. Etchegoin (2009). Principles of Surface Enhanced Raman Spetroscopy, Elsevier, Amsterdam.
    [17]Brown, B.H., et al., Medical Physics and Biomedical Engineering: Medical Science Series. 2017: CRC Press.
    [18] Procházka, M. (2016). "Surface-Enhanced Raman Spectroscopy." Biological and medical physics, biomedical engineering: 1-221.
    [19] Sun, X. (2021). "Glucose detection through surface-enhanced Raman spectroscopy: a review." Analytica Chimica Acta: 339226.
    [20] Cara, E., et al., Towards a traceable enhancement factor in surface-enhanced Raman spectroscopy. Journal of Materials Chemistry C, 2020. 8(46): p. 16513-16519.
    [21] Kumar, S., et al., Surface-enhanced raman scattering: Introduction and applications, in Recent Advances in Nanophotonics-Fundamentals and Applications. 2020, IntechOpen London, UK. p. 1-24.
    [23] Zong, C., et al., Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical reviews, 2018. 118(10): p. 4946-4980.
    [24] Sperling, R. A., et al. (2008). "Biological applications of gold nanoparticles." Chemical Society Reviews 37(9): 1896-1908.
    [25] Cheng Zong, Mengxi Xu, Li-Jia Xu, Ting Wei, Xin Ma, Xiao-Shan Zheng, Ren Hu, and Bin Ren. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges . Chemical Reviews. Chem. Rev. 2018, 118, 10, 4946–4980.
    [26] Oliver, N., et al. (2009). "Glucose sensors: a review of current and emerging technology." Diabetic Medicine 26(3): 197-210.
    [27] Chisanga, M., et al. (2019). "Enhancing disease diagnosis: biomedical applications of surface-enhanced Raman scattering." Applied Sciences 9(6): 1163
    [28] McAnally, M. O., et al. (2017). "Quantitative determination of the differential raman scattering cross sections of glucose by femtosecond stimulated raman scattering." Analytical chemistry 89(13): 6931-6935.
    [29] Sun, X. and H. Li (2013). "Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy." Nanotechnology 24(35): 355706.
    [30] Arbuz, A., et al. (2022). "How gap distance between gold nanoparticles in dimers and trimers on metallic and non-metallic SERS substrates can impact signal enhancement." Nanoscale Advances 4(1): 268-280.
    [31] García-Vidal, F. J. and J. Pendry (1996). "Collective theory for surface enhanced Raman scattering." Physical Review Letters 77(6): 1163.
    [32] Nguyen, T. A. N., et al. (2021). "Controlling the Electron Concentration for Surface-Enhanced Raman Spectroscopy." ACS Photonics 8(8): 2410-2416.
    [33] Khalil, S. M., et al. (2013). "A theoretical study of carbohydrates as corrosion inhibitors of iron." Zeitschrift für Naturforschung A 68(8-9): 581-586.
    [34] Chien, F.-C., et al. (2021). "Nanostructured InGaN Quantum Wells as a Surface-Enhanced Raman Scattering Substrate with Expanded Hot Spots." ACS Applied Nano Materials 4(3): 2614-2620.

    QR CODE
    :::