跳到主要內容

簡易檢索 / 詳目顯示

研究生: 朱永成
Yung-Chen Chu
論文名稱: 黏粒中不同水合能交換性陽離子催化加氯副產物之探討
The effect of different hydration energy cation on organic compound chlorination during drinking water purification process.
指導教授: 李俊福
Jiunn-Fwu Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 140
中文關鍵詞: 交換性陽離子水合能消毒副產物氣態吸附等溫線
外文關鍵詞: exchanged cation, disinfection by-products, hydration energy, adsorption isotherm
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討以黏土顆粒模擬水中濁度時,黏土中交換性陽離子水合能特性於催化氯化反應過程對消毒副產物生成之影響。實驗分為水相及氣相兩部分,水相部分,選擇鈣蒙特石、鎂蒙特石、鉀蒙特石、鈉蒙特石及銫蒙特石等五種具不同水合能交換性陽離子之黏土,對不同溶解性有機物進行氯化反應催化;氣相部分,則以不同水合能交換性陽離子為吸附劑,進行水分子及不同極性有機物之氣態吸附。希望藉由實驗結果,釐清消毒副產物生成與黏土交換性陽離子水合能之關係。
    實驗結果顯示,五種黏土中僅鉀蒙特石及鈣蒙特石,其消毒副產物與陽離子之水合能特性有明顯相關。進一步探討此二黏土所催化的副產物,在不同水溶解度有機前趨物下,皆出現DBPs鉀蒙特石> DBPs鈣蒙特石,推論黏土交換性陽離子之水合能高低,會使催化位址受水分子干擾的程度出現差異,致使消毒副產物之生成有明顯不同。有機前趨物之溶解度主要為影響接近催化位址的機率,但並不代表有機物之化學活性,因此與消毒副產物之生成無明顯的關係。以不同水合能交換性陽離子黏土對水分子進行吸附,發現水分子的吸附量與陽離子之水合能有正相關,此表示黏土催化位址受水分子干擾也為正相關。不同極性有機物於氣相吸附過程中,並未顯現與不同水合能交換性陽離子之黏土有明顯的關連,此結果仍與水相部分之實驗相呼應。
    由本研究結果推論,黏粒中的交換性陽離子其水合能特性不同,的確會使黏土的催化位址受到影響,使得催化能力具有差異性,進而致使消毒副產物產量也因此發生變化。


    The effect of hydration energy cation on organic compound chlorination during drinking water purification process was studied using montmorillonite with five exchangeable cations(Ca, Mg, K, Na, Cs) as simulated suspended solid. The experiments were conducted adsorption of organic compounds on clays both in gas phase and in liquid phase. For the gas adsorption, the sorbates consisted of water and some polar organic compounds, and the sorbents are the clays with exchangeable cation. For the aqueous system, the different exchangeable cations on clay surface are regarded as catalytic center to investigate the relationship between the hydration energy of metal cation and the chlorinated reaction of organic compounds.
    The obtained results indicated that Ca-montmorillonite (Ca-mont) and K-montmorillnite (K-mont) were effective catalyzers as showing in good correlation between hydration energy and DBPs production. For all of the organic precursors, the DBPs produced were Ca-mont > K-mont, implying that the differences in hydration energy of cations could lead to the different hydration level on catalytic sites. The water solubilities of organic precursors represent the probability of the organic compounds to reach catalytic sites. However, chemical activities of organic compounds are a key point for the DBPs production. The results obtained from vapor-phase experiments show that the water adsorption has a strong correlation with the hydration energy of the clay surface cation.
    Our findings in this study imply that the hydration energy of cations on the clay surface can generate the different catalytic sites to change the disinfection by-products formation potential(DBPFP).

    目錄.................................................I 圖目錄...............................................V 表目錄..............................................VIII 第一章 前言.........................................1 1-1 研究緣起.....................................1 1-2 研究目的與內容...............................3 第二章 文獻回顧.....................................5 2-1 黏土與有機物之作用...........................5 2-1-1 表面反應介紹..............................5 2-1-2 黏土表面化學反應..........................6 2-1-2-1 黏土表面各種狀態.......................6 2-1-3 黏土礦物與有機物間各表面反應之作用機制....7 2-1-3-1 重排反應............................... 8 2-1-3-2 水解反應...............................8 2-1-3-3 氧化聚合反應...........................9 2-1-3-4 氧化反應和電荷轉移反應.................10 2-1-3-5 其它...................................11 2-2 氣態吸附等溫線...............................12 2-3 有機物之氯化反應.............................15 2-3-1 水體中的有機物............................15 2-3-1-1 天然有機物及腐植質.....................15 2-3-1-2 高分子凝聚劑...........................20 2-3-2 水中之氯化反應............................21 2-3-3 氯與水中有機污染物的反應..................23 2-4 金屬陽離子與有機物之作用.....................26 2-4-1 金屬陽離子對氯化反應的催化效益............26 2-4-2 陽離子之水合能對有機物之影響..............27 2-5 消毒副產物...................................29 第三章 實驗內容、方法與設備材料.....................34 3-1 實驗內容及架構...............................34 3-2 實驗材料.....................................36 3-2-1 土樣......................................36 3-2-2 有機物....................................37 3-2-2-1 大分子聚合物...........................37 3-2-2-2 溶解性有機物...........................37 3-2-3 氯劑......................................37 3-3 實驗設備.....................................37 3-3-1 氣態吸附設備..............................39 3-3-2 催化消毒副產物前處理設備..................43 3-3-3 水中揮發性有機物之分析設備................45 3-4 實驗方法.....................................49 3-4-1 含過渡金屬陽離子黏土製備與性質分析........49 3-4-1-1 含過汳金屬陽離子黏土製備...............49 3-4-1-2 不同表面特性黏土交換性陽離子含量分析...52 3-4-1-3 不同表面特性黏土程面積及孔隙值測定.....55 II 3-4-2 催化劑對水蒸氣及有機物之氣態吸附..........55 3-4-2-1 氣態吸附實驗配置.......................55 3-4-2-2 氣態吸附實驗步驟.......................58 3-4-3 催化劑催化水中有機物之氯化反應............61 3-4-4 水中揮發性有機物分析......................63 3-4-5 水中餘氯測定..............................70 第四章 結果與討論...................................73 4-1 土壤基本性質..................................73 4-1-1催化土壤之交換性陽離子置換率...............73 4-1-2陽離子交換黏土之表面特性...................75 4-2黏土不同表面特性對催化消毒副產物生成之影響....77 4-2-1不同水合能交換性陽離子蒙特石催化之DBPs 生成量.....................................77 4-2-2不同水溶解度氯化前驅物催化之DBPs生成量....81 4-2-3黏土催化機制...............................84 4-3不同表面特性黏土催化消毒副產物之生成物種......87 4-3-1不同水合能黏土催化之DBPs催化物種..........87 4-3-2不同水合能黏土催化反應機制之探討...........94 4-3-3氯仿生成機制...............................95 4-4 氣態吸附......................................97 4-4-1交換性陽離子黏土之氣態吸附等溫線...........97 4-4-1-1不同水合能吸附劑對水之吸附等溫線........97 4-4-1-2黏土交換性陽離子的水合能對溶解性有機 前趨物在吸附作用之關係..................105 4-4-2 吸附組合之動力曲線.........................111 III 第五章 結論與建議...................................115 5-1 結論..........................................115 5-2 建議..........................................117 參考文獻.............................................118

    1.Rook, J. J., “Formation of Haloforms During Chlorination of Natural Waters,” Water Treatment Exam., 23 (5), pp.234-242 (1974).
    2.Ueno, H., T. Moto, Y. Sayato, and K. Nakamuro, “Disinfection By-Products in the Chlorination of Organic Nitrogen Compounds By-Products form Kynurenine,” Water Science and Technology, 33 (8), pp.1425-1433 (1996).
    3.Zhou, S. W., F. D. Xu, S. M. Li, R. X. Song, S. Qi, Y. Zhang, and Y. P. Bao, “Major Origin of Mutagneicity of Chlorinated Drinking Water in China: Humic Acid or Pollutants,” The Science of the Total Environment, 196, pp.191-196 (1997).
    4.Lee, J. F., M. P. Liao, H. D. Tseng, and T. P. Wen, “Behavior of Organic Polymers in Drinking Water Purification,” Journal of Chemosphere, 37(6), pp.1045-1061 (1998).
    5.彭紀綸,「不同表面特性黏土於淨水程序中對高分子凝聚劑氯化反應影響之研究」,碩士論文,中央大學環境工程研究所,中壢(1999)。
    6.林百顯,「不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究」,碩士論文,中央大學環境工程研究所,中壢(2000)。
    7.謝瑞全,「不同表面特性黏土催化水中有機物之氯化反應研究」,碩士論文,中央大學環境工程研究所,中壢(2002)。
    8.Chiou, C. T., David, W. R., “Effects Of Exchanged Cation And Layer Change On The Sorption Of W ater And EGME Vapors On Montmorillonite Clays,” clays and clay minerals, 45(6), pp.867-880 (1997).
    9.洪崑煌主譯,土壤化學,國立編譯館出版,第34-38頁,初版,台北(1996)。
    10.Li, H., Teppen, B. J., Laird, D. A., Johnston, C. T., Boyd, S. A., “Geochemical Modulation of Pesticide Sorption on Smectite Clay”, Environment Science and Technology, 38,pp 5393-5399 (2004).
    11.Voudrias, E. A. and M. Reinhard, “Abiotic Organic Reactions at Mineral Surfaces,” Amer. Chem. Soc. Sympos. Ser, 323, pp.462-486 (1986).
    12.Pickering, W. F., “Heterogeneous Oxidation Reactions,” Rev. Pure Appl. Chem, 16, pp.185-208 (1966).
    13.Hawthorne, D. G. and D. H. Solomon , “Catalytic Activity of Sodium Kaolinites,” Clays. Clay Minerals, 20, pp.75-78 (1972).
    14.Solomon, D. H. and H. H. Murray, “Acid-Base Interactions and the Properties of Kaolinite in Non-aqueous Media,” Clays. Clay Minerals,20, pp.135-141 (1972).
    15.Bailey, G. W. and S. W Karickhoff, “An Ultraviolet Spectroscopic Method for Monitoring Surface Acidity of Clay Minerals under Varying Water Content,” Clays. Clay Minerals, 21, pp.471-478 (1973).
    16.Frenkel, M., “Surface Acidity of Montmorillonite,” Clays. Clay Minerals, 22, pp.435-442 (1974).
    17.Helsen, J. A.; R. Drieskens, and J.Chaussidon, “Position of Exchangeable Cations in Montmorillonite,” Clays. Clay Minerals, 23, pp.334-335 (1975).
    18.Hasegawa, H., “Spectroscopic Studies on the Color Reaction of Acid Clay with Amines,” J. Phys. Chem., 66, pp.834-835 (1962).
    19.Furukawa, T. and G. W. Brindley, “Adsorption and Oxidation of Benzidine and Aniline by Montmorillonite and Hectorite,” Clays. Clay Minerals, 21, pp.279-287 (1973).
    20.Thompson, T. D. and W. F. Moll, “Oxidative Power of Smectites Measured by Hydroqunone,” Clays. Clay Minerals, 21, pp.337-350 (1973).
    21.Lahav, N. and D. M. Anderson, “Montmorillonite-benzidine Reactions in the Frozen and Dry States,” Clays. Clay Minerals, 21, pp.137 (1973).
    22.Besson, G.; H. Estrade,; L. Gatineau,; C. Tchoubar, and J. Mering, “A kinetic Survey of The Cation Exchange and The Oxidation of A Vermiculite,” Clays. Clay Minerals, 23, pp.318-322 (1975).
    23.Uytterhoeven, J., “Organic Derivatives of Silicates and Aluminosilicates,” Silicates Inds., 25, pp.403-409 (1960).
    24.Uytterhoeven, J., “Determination of the Surface Hydroxyl Groups of Kaolinite by Organometallic Compounds (CH3MgI and CH3Li),” Bull. Groupe Franc. Argiles., 13, pp.69-76 (1962).
    25.Mortland, M. M., “Proceedings of the International Clay Conference,” Wilmette, Illinois (1975).
    26.Philp. R. P., J. R. Maxwell, and G. Eglinton, “Environmental Geochemistry of Aquatic Sediments,” Sci. Progr. (Oxf.), 63, pp.521-545 (1976).
    27.Sieskind, O. and P. Albrecht, “Efficient Synthesis of Rearranged Cholest-13(17)-enes Catalysed by Montmorillonite Clay,” Tetrahedron Lett., 26, pp.2135-2136 (1985).
    28.Mingerlgrin, U. and S. Salzman, “Surface Reactions of Parathion on Clays,” Clays. Clay Minerals, 27, pp.72-78 (1979).
    29.March, J., “Advanced Organic Chemistry, Reactions, Mechanisms, and Structure,” 3rd. Ed. ; John Wiley & Sons : New York (1985).
    30.El-Amamy, M. M. and T. Mill, “Hydrolysis Kinetics of Organic-Chemicals on Montmorillonite and Kaolinite Surfaces As Related to Moisture-Content,” Clays. Clay Minerals, 32, pp.67-73 (1984).
    31.Saltzman, S., U. Mingelgrin, and B. Yaron, “Role of Water Hydrolysis on Parathion and Methylparathion on Kaolinite,” J. Agric. Food Chem., 24, pp.739-743 (1976).
    32.Isaacson, P. J. and B. L. Sawhney, “Sorption and Transformaiton of Phenols on Clay Surface:Effect of Exchangeable Cations,” Clay Minerals, 18, pp.253-265 (1983).
    33.Sawhney, B. L., “Vapor-Phase Sorption and Polymerization of Phenols by Semectite in Air Nitrogen,” Clays. Clay Minerals, 33, pp.123-127 (1985).
    34.Shindo, H. and P. M. Huang, “Catalytic Polymerization of Hydroquinone by Primary Minerals,” Soil Science, 139, pp.505-511 (1985).
    35.Wang, Thomas S. C., L. S. Wu and F.Y. Lang, “Catalytic Polymerization of Phenoilic Compoinds by Primary Minerals,” Soil Science, 126, pp.15-21 (1978).
    36.Soma, Y. and M. Soma, “Raman Spectroscopic Evidence of Fromation of p-Dimethoxybenzene Cation on Cu-Montmorillonites,” Chem. Phys. Letters, 94, pp.475-478 (1983).
    37.Soma, Y. and M. Soma, “Reaction of Aromatic Molecules in the Interlayer of Transition-Metal Ion-Exchanged Montmorillonite Studied by Resonance Raman Spectroscopy. 2. Monosubstituted Benzene and 4,4’-Disubstituted Biphenyls,” J. Phys. Chem., 89, pp.738-742 (1985).
    38.Frenkel, M. and L. Heller-Kallai, “Interlayer Cations as Reaction Directors in the Transformation of Limonene on Montmorillonite,” Clays. Clay Minerals, 31, pp.92-96 (1983).
    39.Solomon, D. H., B. C. Loft, and J. D. Swift, “Reactions Catalyzed by Minerals. IV. The Mechanism of the Benzidine Blue Reaction on Silicate Minerals,” Clay Miner., 7, pp.289-398 (1968).
    40.Furukawa, T. and G. W. Brindley, “Adsorption and Oxidation of Benzidine and Aniline by Montmorillonite and Hectorite,” Clays. Clay Minerals, 21, pp.279-288 (1973).
    41.Solomon, D. H. and G. H. Hawthorne, “Chemistry of Pigmers and Fillers,” John Wiley & Sons : New York (1983).
    42.Alexander, O., R. I. Kagi, and A. V. Larcher, “Clay Catalysis of Aromatic Hydrogen-Exchange Reactions,” Geoshim. Cosmochim. Acta., 46, pp.219-222 (1982).
    43.Alexander, O., R. I. Kagi, and A. V. Larcher, “Clay Catalysis of Alkyl Hydrogen-Exchange Reactions - Reaction-Mechanisms,” Org. Gesmochim., 6, pp.755-760 (1984).
    44.Thmopson, T. D. and W. F. Moll, “ Oxidative Power of Semctites Measured by Hydroquinone,” Clays. Clay Minerals, 21, pp.337-350 (1973).
    45.Soma, Y., M. Soma, and I. Harada, “The Oxidative Polymerization of Aromatic Molecules in the Interlayer of Montmorillonites Studuied by Resonance Raman Spectroscopy,” J. Contaminant Hydrology, 1, pp.95-106 (1986).
    46.Sawhney, B. L., R. K. Kozloski, P. J. Isaacson, and M. P. N. Gent, “Polymerization of 2,6-Dimethylphnol on Smectite Surfaces,” Clays. Clay Minerals, 32 (2), pp.108-114 (1984).
    47.Lee, G. F., “Kinetics of Reactions Between Chlorine and Phenolic Compounds,” principles and applications of water chemistry, S. D. Faust and J. V. Hunted, eds., John Wiley, New York (1967).
    48.Brunauer, S., L. S. Deming, W. S. Deming, and E. Teller, J. Am. Chem. Soc., 62, pp.1723(1940).
    49.Biber, M. V., F. O. Gulacar, and J. Buffle, “Seasonal Variations in Principal Groups of Organic Matter in a Eutrophic Lake Using Pyrolysis /GC/MS,” Environment Science and Technology, 30(12), pp.3501-3607 (1996).
    50.Singer, P. C., “Humic Substances as Precursors for Potentially Harmful Disinfection By-Products,” Water Science and Technology, 40(9), pp.25-30 (1999).
    51.Jansen, S. A., M. Malaty, S. Nwabara, E. Johenson, E. Ghabbour, G. Davies and J. M. Varnum, “Structural Modeling in Humic acid,” Materials Science and Engineering C4, pp.175-179 (1996).
    52.Scheck, C. K. and F. H. Frimmel, “Degradation of Phenol and Salicylic Acid by Ultraviolet Radiation/Hydrogen Peroxide /Oxygen,” Wat. Res., 29(10), pp. 2346-2352 (1995).
    53.Bohn et al., “ Soil Chemistry” : 142, Wiley , New York, 1985.
    54.Stevenson, F. J., “ Human Chemistry Genesis, Composition, Reactions”, Wiley, J and Sons, Inc, pp. 337-354 (1982).
    55.Reckhow, D. A., P. C. Singer., R. L. Malcolm, “Chlorination of Humic Materials: Byproduct Formation and Chemical Interpretations,” Environment Science and Technology, 24(11), pp.1655-1664 (1990).
    56.Wu, W. W., P. A. Chadik, W. M. Davis, J. J. Delfino and D. H. Powell, “The Effect of Structural Characteristics of Humic Substances on Disinfection By-Product Formation in Chlorination,” Natural Organic Matter and Disinfection By-Products, New York, pp.109-121 (2000).
    57.Cook, R. L., and C. H. Langford, “Structural Characterization of a Fulvic Acid and a Humic Acid Using Solid-State Ramp-CP-MAS 13C Nuclear Magnetic Resonance,” Environment Science and Technology, 32(5), pp.719-725 (1998).
    58.Croll, B. T., Arkell, G. M. and R. P. J. Hodge, “Residues of Acrylamide in Water”, Water Research, Vol.8, pp.989~993 (1974).
    59.Singer, P. C. and S. D. Chang, “Correlations Between Trihalomethanes and Total Organic Halides Formed During Water Treatment”, Journal of American Water Work Association (Research and Technology), pp.61~65(1989)
    60.Stump, V.L. and J.T. Novak, “Polyelectrolyte Selection for Direct Filtration”, Journal of AWWA, No.71, pp.338~342(1979)
    61.Bellar T. A. and J. J. Lichtenberg, “The Occurrence of Organohalides in Chlorinated Drinking Waters,” J. AWWA, pp. 703-706 (1974).
    62.Let erman, R. D. and R. W. Pero, “Contaminants in Polyelectrolytes Used in Water Treatment”, Journal of AWWA, pp.87~97, November(1990)
    63.Bellar T. A. and J. J. Lichtenberg, “The Occurrence of Organohalides in Chlorinated Drinking Waters,” J. AWWA, pp. 703-706 (1974).
    64.Christman, R. F., D. L. Norwood, D. S. Millington, J. D. Johnson, “Identity and Yields of Major Halogenated Products of Aquatic Fulvic Acid Chlorination,” Environment Science and Technology, 17(10), pp.625-631 (1983).
    65.李敏華譯著,水質化學,復漢出版社印行,第401-406 頁,民國七十七年六月
    66.Li, C. W., M. M. Benjamin, G. V. Korshin, “Use of UV Spectroscopy to Characterize the reaction Between NOM and Free Chlorine,” Environment Science and Technology, 34(12), pp.2570-2575 (2000).
    67.Scully FE, Howell GD, speed M, “ Effects of copper(Ⅱ) on the production of trihalomethanes in model and natural waters”, In: Jolley RL, editor. Water chlorination: environmental impact and health wffwcts, vol.6. Am Arbor, MI: Ann Arbor Science, pp.703-29712 (1987).
    68.Barnes D, Fitzgerald PA, Swan HB. “Catalyzed formation of chlorinated organic materials in water”, Water Sci. Technol., 21(2):pp.59-63 (1989).
    69.Chappell, M. A., Laird,D. A., Thompson, M. L., Li H., Teppen, B. J., Aggarwal, V., Johnston, C. T., Boyd, S. A., “Influence of smectite hydration and swelling on atrazine sorption behavior”, Environment Science and Technology, 38,pp 5393-5399 (2004).
    70.Pampillon, J. F., Palacios, M.,and M. E. Rodriguez, “Organolhalogenated Compounds Levels in Chlorinated Drinking Water and Current Compliance with Quality Standards Throughout the European Union”,Wat.Res.Vol.34,No.3,pp.1002-1016 (2000).
    71.HDR Engineering Inc., Handbook of Public Water Syserms, 2nd ED, John Wiley & Sons, United States of America, pp. 78 (2001).
    72.Peters, R. H., W. B. Leer, F. M. Versteegh, “Identification of Halogenated Compounds Produced By Chlorination of Humic Acid in the Presence of Bromide,” Journal of Chromatography A, 686, pp.253-261 (1994).
    73.Chiou, C. T.;Shoup, T. D., “Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity”, Environ. Sci. Technol., 19, pp. 1196-1200 (1985).
    74.Chiou, C. T.;Kile, D. E.;Malcolm, R. L., “Sorption of vapors of some organic liquids on soil humic acid and its relation to partition of organic compounds in soil organic matter”, Environ. Sci. Technol., 22, pp.298-303 (1988).
    75.Ong, S. K.;Lion, L. W., “Trichloroethylene vapor sorption onto soil minerals”, Soil Sci. Soc. Am. J., 55, pp.1559-1568 (1991).
    76.Rutherford, D. W.;Chiou, C. T., “Effect of water saturation in soil organic matter on the partition of organic compounds”, Environ. Sci. Technol., 26, pp.965-970 (1992).
    77.Chiou, C. T.;Rutherford, D. W.;Manes, M., “Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data”, Environ. Sci. Technol., 27, pp.1567-1574 (1993).
    78.Chiou, C. T.;Kile, D. E., “Effect of polar and nonpolar groups on the solubility of organic compounds in soil organic matter”, Environ. Sci. Technol., 28, pp.1139-1144 (1994).
    79.Campagnolo, J. F. ; Akgerman, A., “A prediction method for gas-phase VOC Isotherms onto soils and soil constituents”, J. Hazard. Mater., 49, pp.231-245 (1996).
    80.Dural, N. H.;Chen, C. H., “Analysis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils,” J. Hazard. Mater., 53, pp.75-92 (1997).
    81.Kohki, E., k. Tomonori, N. Kohji, M. Tomoo, and K. Kaneda, “Simple and clean syntheses of 9,9-bis{4-(2-hydroxyethoxy)phenyl}fluorine from the aromatic alkylation of phenoxyrthanol with fluoren-9-one catalysed by titanium cation-exchanged montmorillonite , ”Green Chemistry,2,2pp.157-160(2000).
    82.Pfeifer, P.; Krim, J.; Wu, Y. J. and M. W. Cole, “Multilayer Adsorption on a Fractally Rough-Surface ”,Physcial Review Letters, Vol.62, No.17, pp.1997-2000(1989).
    83.Pfeifer, P. and M. W. Cole, “Fractals in Surface Science – Scattering and Thermodynamics of Adsorbed Films .2 ”,New Journal of Chemistry, Vol.14, No.3, pp.221-232( 1990).
    84.Neimark, A. V. “A New Approach to the Determination of the Surface Fractal Dimension of Porous Solids, ”Physical A, Vol.191, pp.258-262 (1992).
    85.Solomon, D. H.; Loft, B. C. and J. D. Swift, “Reactions Catalyzed by Minerals. IV. The Mechanism of the Benzidine Blue Reaction on Silicate Minerals” ,Clay Miner., Vol.7, pp.289-398(1968).
    86.Solomon, D. H.; Loft, B. C. and J. D. Swift, “Reactions Catalyzed by Minerals. V. The Reaction of Leuco Dyes and Unsaturated Organic Compounds with Clay Minerals”, Clay Miner., Vol.7, pp.399-408 ( 1968).
    87.Thomas, S. C.; Wang, S. W. L. and L. F. Yue, “Catalytic Polymerization of Phenolic Compounds by Clay Minerals”, Soil Science, Vol.126, No.1, pp.15-21( 1978).
    88.Morris, R. D., “Chlorination, Chlorination By-products, and Cancer: A Meta-Analysis,” American Joural of Public Health, 82(7), pp.955-963 (1992).
    89.Lambert, S. M., “Functional Relationship Between Sorption in Soil and Chemical Structure”, Journal of Agric. Food Chem., 15, pp.572-576, (1976).
    90.Chiou, C. T., Peter L. J. and V. H. Freed, “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds”, Science, Vol.206, pp.831-832, (1979).
    91.Amacher, M. C., “Methods of obtaining and analyzing linetic data.-In Rates of Soil Chemical Processes”, (Sparks, D. L., and D. L. Suarez), SSSA Spec. Publ., 27, pp.19-59 (1991)

    QR CODE
    :::