跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王威智
Wei-Chih Wang
論文名稱: 石墨烯集電層應用於雲母基微型固態超級電容器
All-Solid-State Micro-Supercapacitors Based on Mica Substrate with Graphene Current Collector
指導教授: 李勝偉
Sheng-Wei Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 超級電容器可撓超電容混合式電容擬電容石墨烯金屬氧化物微結構電化學儲能元件
外文關鍵詞: Supercapacitor, Flexible supercapacitor, Hybrid capacitor, Pseudocapacitor, Graphene, Metal oxide, Microstructure, Electrochemistry, Energy storage device
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著攜帶式裝置的發展,儲存能源的需要也隨之而來。微型超級電容器(MSCs)由於擁有由電極結構所造就的高面積及體積比電容而引發了關注。而使用了可撓透明基材作為主體的超級電容器不只可以適用於輕薄化裝置中有限的空間,且與傳統超級電容器相比下對裝置透明度影響較少。
    在此研究中,我們使用雲母作為基材,石墨烯以濕轉印製程轉移至基板表面,用以作為可撓且透明的電流收集層,再以濺鍍製程將銀及氧化鉬交互層疊而成的功能層沉積其上。製備完成的元件可達到的最高體積比電容值為14.91 (F/cm3),由穩定度測試可知經過10000圈的重複充放電後,比電容值並未有明顯衰退,展現了良好的循環穩定度。同時也進行了可撓曲性質的相關測試,在不同程度彎曲條件下,進行了循環伏安的測試。由測試結果可知,元件擁有好的可撓程度,因其CV曲線在不同條件的彎曲下,並未發現有明顯的變化。重複撓曲測試顯示了以石墨烯作為電流收集層的微型超電容與以金作為電流收集層相比擁有較佳抗疲勞能力,在經過1000次重複撓曲後,CV曲線及EIS量測結果並未有顯著改變。
    本研究指出了擁有優異機械性質的電流收集層材料對於可撓超級電容器的抗疲勞能力有重大影響。石墨烯為一種公認相比於大部分金屬,擁有較好機械性質的材料,因此以石墨烯製成之元件相比於以金製成之元件,對於疲勞有著較佳的抵抗能力。這些結果也表明了我們的設計與製程在微型固態儲能系統的應用端有著一定的潛力。


    With the development of the portable device moving on, the needs of small-scale energy storage significantly increase. Micro-supercapacitors (MSCs) have attracted interests due to their high areal and volumetric capacitance that is dependent upon their electrode structure. MSCs based on flexible transparent substrates can not only adapt to the limited space for the micro-devices but also maintain the transparency comparing to the traditional supercapacitors.
    In this study, we use mica as MSC substrates. Graphene materials were transferred onto mica as flexible and transparent current collector and the function layer was formed by using layered Ag and MoOx structures, which were based on previous studies in our laboratory. The MSC device shows the highest volumetric capacitance of 14.91 (F/cm3), also presents a great cycle stability which remains most of capacitance after a large cycling number of 10000 times. Bending tests for MSC reliability were also introduced. We have tested the flexibility of the MSC devices with different bending conditions. The results show that our MSC devices have good flexibility. Repeated bending tests show the MSC devices with the graphene current collector have better durability to fatigue comparing to those with Au collector, since the CV curves show almost no change after repeated bending.
    This work indicates that an electrode material with good mechanical properties is crucial to achieving flexible supercapacitors with high fatigue durability. Graphene is a material which can be considered having better mechanical properties compares to most metals. These experimental results suggest that our MSC micro-devices show great promise for applications in integrated energy storage for all solid-state microsystems technologies.

    目錄 摘要 IV Abstract VI 目錄 VII 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 基本原理與文獻回顧 3 1.2.1 超級電容器簡介 3 1.2.2 超級電容器之儲能機制 4 1.2.2.1 電雙層電容器 4 1.2.2.2 擬電容器 7 1.2.2.3 混合電容器 8 1.2.3 超級電容器之電極材料 9 1.2.3.1 碳系材料 9 1.2.3.2 金屬氧化物 10 1.2.3.3 導電高分子 11 1.2.4 超級電容器之電解質 12 1.2.5 超級電容器之電化學原理與技術 14 1.2.5.1 循環伏安法 14 1.2.5.2 恆電流充放電法 16 1.2.5.3 電化學交流阻抗分析 17 1.2.6 微型超級電容器 18 1.2.7 可撓超級電容器 21 1.3 研究動機與目的 21 第二章 實驗程序與方法 23 2.1 實驗藥品 23 2.2 製程與分析儀器 24 2.2.1 雷射光罩製作系統(Laser Direct Write Image System) 24 2.2.2 光罩對準曝光機(Mask Aligner) 24 2.2.3 旋轉塗佈機(Spin Coater) 25 2.2.4 高真空電子束暨熱阻式蒸鍍系統(E-gun & Thermal Evaporation System) 25 2.2.5 射頻與直流磁控濺鍍機(RF&DC Magnetron Sputtering) 26 2.2.6 紫外光臭氧清洗機(UV-Ozone Stripper) 26 2.2.7 四點探針(Four Point Probe) 27 2.2.8 積分球(Integrating Sphere) 27 2.2.9 恆電位儀(Potentiostat) 27 2.2.10 X射線光電子能譜(X-Ray Photoelectron spectroscopy, XPS) 28 2.2.11 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 28 2.2.12 掃描穿透式電子顯微鏡(Scanning Transmission Electron Microscopy, STEM) 29 2.2.13 雙束型聚焦離子束顯微鏡(Dual Beam Focus Ion Beam, DB-FIB) 29 2.3 實驗流程 31 2.4 實驗製程 32 2.4.1 指叉圖形結構與組態之設計 32 2.4.2-1 製備天然雲母基板 33 2.4.2-2 轉印多層石墨烯 33 2.4.2-3 石墨烯參雜 34 2.4.3-1 黃光微影 34 2.4.3-2 製備Au集電極 35 2.4.4-1 製備活性物質 35 2.4.4-2 氧電漿去除多餘石墨烯 36 2.4.5 掀離製程 36 2.4.6 製備固態電解質 36 3.1 材料分析 37 3.1.1穿透率(Transmittance) 37 3.1.2 片電阻(Sheet Resistance) 38 3.1.3優值(Figure of Merit) 40 3.1.4穿透式電子顯微鏡分析(TEM) 41 3.1.5掃描電子顯微鏡分析(SEM) 43 3.2 不同電流收集層材料之MoOx指叉式微型可撓固態超級電容器特性分析 44 3.2.1 循環伏安與恆電流充放電分析 44 3.2.2 電化學交流阻抗分析 48 3.2.3 頻率響應分析 50 3.2.3 循環穩定性分析 51 3.3可撓指叉式微型固態超級電容器之抗撓曲分析 53 3.3.1 循環伏安分析 53 3.2.2 定曲率半徑重複充放電測試 56 3.2.3 電化學交流阻抗分析 57 第四章 結論 58 第五章 參考文獻 59 圖目錄 圖1.1 各種儲能裝置的Ragone plot分佈[13] 4 圖 1.2 電雙層之電荷分佈模型:(a)Helmholtz模型;(b)Gouy-Chapman模型;(c) Stern 模型[15] 5 圖 1.3由多孔性碳電極組成之電雙層電容器的電荷離子分佈情形和電位關係[15] 6 圖 1.4 超級電容器之儲能機制示意圖:(a)電雙層電容器型;(b)擬電容器型;(c)混合電容器型[12] 8 圖 1.5 電荷儲存的法拉第機制示意圖:(a)低電位沉積;(b)氧化還原型擬電容;(c)置入型擬電容[18] 9 圖 1.6 超級電容器電極材料之比電容值[25] 11 圖 1.7 電解質對超級電容器的影響[47] 13 圖 1.8 超級電容器之電解質種類[47] 13 圖 1.9 MnO2電極材料於0.1 M K2SO4電解質之循環伏安示意圖[3] 15 圖 1.10 活性碳於不同電解質之Nyquist plot [55] 18 圖 1.11 以電鍍製程之二氧化錳指叉型芯片超級電容器:(a)示意圖;(b)光學照片[59] 20 圖 1.12 不同結構組成之超級電容器示意圖:(a)夾層型結構;(b)指叉型結構[57] 20 圖 3.1 石墨烯層數對穿透率之關係圖 37 圖 3.2 石墨烯層數對片電阻之關係圖 38 圖 3.3 片電阻及光穿透度的綜合比較 39 圖 3.4 不同集電層的Figure of merit比較 40 圖 3.5 TEM剖面顯微影像 (a) 重複充放電前及 (b) 後 42 圖 3.6 SEM表面顯微照片:(a)石墨烯;(b)金 所製成之元件表面形貌 43 圖 3.7 不同電流收集層之MoOx可撓指叉式微型固態超級電容器於掃描速率5 mV/s至5 V/s的循環伏安圖:(a) 石墨烯八次轉印 (24層原子層);(b) 50 nm金薄膜 46 圖 3.8不同電流收集層之MoOx可撓指叉式微型固態超級電容器於電流密度0.01至1 mA/cm2的恆電流充放電圖:(a) 石墨烯八次轉印 (24層原子層);(b) 50 nm金薄膜 47 圖 3.9不同電流收集層之MoOx可撓指叉式微型固態超級電容器之Nyquist plot 49 圖 3.10為石墨烯以及金元件之波德圖 50 圖 3.11循環穩定性分析 52 圖 3.12不同電流收集層之MoOx可撓指叉式微型固態超級電容器以5 V/s掃描速率進行撓曲測試所得到的循環伏安圖: (a) 石墨烯八次轉印 (24層原子層);(b) 50 nm金薄膜 54 55 圖 3.13不同電流收集層之MoOx可撓指叉式微型固態超級電容器在經過1000次撓曲後的比電容衰退比較 55 圖 3.14金及石墨烯元件於固定曲率下進行10000圈重複充放電的比較 56 圖 3.15不同電流收集層之MoOx可撓指叉式微型固態超級電容器經1000次重複撓曲前後測得之Nyquist plot. 57 表目錄 表 2.1 實驗藥品 23

    1. M. Jayalashmi and K. Balasubramanian, “Simple capacitors to supercapacitors - an overview,” Int. J. Electrochem. Sci. 3, 1196-1217 (2008).
    2. D. P. Dubal, P. Gomez-Romero, B. R. Sankapal and R. Holze, “Nickel Cobaltite as an Emerging Material for Supercapacitors: An Overview,” Nano Energy 11, 377-399(2015).
    3. P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors,” Nat. Mater. 7, 845-854(2008).
    4. A. González, E. Goikolea, J. A. Barrena and R. Mysyk, “Review on supercapacitors: technologies and materials, ” Renew Sustain Energy Rev. 58, 1189-1206(2016).
    5. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu, “Electrochemical Energy Storage for Green Grid,” Chem. Rev. 111, 3577-3613(2011).
    6. Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang and Y.-W. Yang, “Mesoporous Transition Metal Oxides for Supercapacitors,” Nanomaterials 5, 1667-1689(2015).
    7. W.-C. Hung, C.-L. Chang and Y.-P. Wang, “石墨烯於超級電容之應用研究,” 新新季刊 第四十二卷第一期, 35-43(2014).
    8. R. F. Service, “New ‘supercapacitor’ promises to pack more electrical punch,” Science 313, 902-905(2006).
    9. A. K. Shukla, S. Sampath and K. Vijayamohanan, “Electrochemical supercapacitors: Energy storage beyond batteries,” Curr. Sci. 79, 1656-1661(2000).
    10. C. D. Lokhande, D. P. Dubal and O. S. Joo, ” Metal oxide thin film based supercapacitors,” Curr. Appl. Phys. 11, 255-270(2011).
    11. A. G. Pandolfo and A. F. Hollenkamp, “Carbon properties and their role in supercapacitors,” J. Power Sources 157, 11-27(2006).
    12. M. Vangari, T. Pryor and L. Jiang, “Supercapacitors: Review of Materials and Fabrication Methods,” J. Energy Eng. 139, 72-79(2013).
    13. R. Kötz and M. Carlen, “Principles and applications of electrochemical capacitors,” Electrochim. Acta 45, 2483-2498(2000).
    14. G. Wang, L. Zhang and J. Zhang, “A Review of Electrode Materials for Electrochemical Supercapacitors,” Chem. Soc. Rev. 41, 797-828(2012).
    15. L. L. Zhang and X. S. Zhao, “Carbon-based Materials as Supercapacitor Electrodes,” Chem. Soc. Rev. 38, 2520-2531(2009).
    16. M. S. Kolathodi, M. Palei and T. S. Natarajan, “Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors,” J. Mater. Chem. A 3, 7513-7522(2015).
    17. J. Q. Xiao, Q. Lu, and J. G. Chen, “Nanostructured Electrodes for High-performance Pseudocapacitors,” Angew. Chem. Int. Ed. 52, 1882-1889(2013).
    18. V. Augustyn, P. Simon and B. Dunn, “Pseudocapacitive Oxide Materials for High-rate Electrochemical Energy Storage,” Energy Environ. Sci. 7, 1597-1614(2014).
    19. H. Zhao, W. Han, W. Lan, J. Zhou, Z. Zhang, W. Fu and E. Xie, “Bubble Carbon-nanofibers Decorated with MnO2 Nanosheets as High-Performance Supercapacitor Electrode,” Electrochim. Acta 222, 1931-1939(2016).
    20. H. Wang, H. S. Casalongue, Y. Liang and H. Dai, “Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials,” J. Am. Chem. Soc. 132, 7472-7477(2010).
    21. S. C. Lee, U. M. Patil, S. J. Kim, S. Ahn, S.-W. Kang and S. C. Jun, “All-solid-state flexible asymmetric micro supercapacitors based on cobalt hydroxide and reduced graphene oxide electrodes,” RSC Adv. 6, 43844-43854(2016).
    22. C. W. Shen, X. H. Wang, S. W. Li, J. G. Wang, W. F. Zhang and F. Y. Kang, “A high-energy-density micro supercapacitor of asymmetric MnO2-carbon configuration by using micro-fabrication technologies,” J. Power Sources 234, 302-309(2013).
    23. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, “Progress of electrochemical capacitor electrode materials: A review,” Int. J. Hydrogen Energy 34, 4889-4899(2009).
    24. S.-M. Chen, R. Ramachandran, V. Mani and R. Saraswathi, “Recent Advancements in Electrode Materials for the High-performance Electrochemical Supercapacitors: A Review,” Int. J. Electrochem. Sci. 9, 4072-4085(2014).
    25. T. Zhai, X. Lu, F. Wang, H. Xia and Y. Tong, “MnO2 nanomaterials for flexible supercapacitors: performance enhancement via intrinsic and extrinsic modification,” Nanoscale Horiz. 1, 109-124(2016).
    26. G. Salitra, A. Soffer, L. Eliad, Y. Cohen and D. Aurbach, “Carbon Electrodes for Double‐Layer Capacitors I. Relations Between Ion and Pore Dimensions,” J. Electrochem. Soc. 147, 2486-2493(2000).
    27. O. Barbieri, M. Hahn, A. Herzog and R. Kotz, “Capacitance limits of high surface area activated carbons for double layer capacitors,” Carbon 43, 1303-1310(2005).
    28. D. Qu and H. Shi, “Studies of activated carbons used in double-layer capacitors,” J. Power Sources 74, 99-107(1998).
    29. M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara and M. S. Dresselhaus, “Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes,” J. Electrochem. Soc. 148, A910-A914(2001).
    30. J. N. Barisci, G. G. Wallace and R. H. Baughman, “Electrochemical Characterization of Single-Walled Carbon Nanotube Electrodes,” J. Electrochem. Soc. 147, 4580-4583(2000).
    31. S. Shiraishi, H. Kurihara, K. Okabe, D. Hulicova and A. Oya, “Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPcoTM BuckytubesTM) in propylene carbonate electrolytes,” Electrochem. Commun. 4, 593-598(2002).
    32. C. Kim, “Electrochemical characterization of electrospun active carbon nanofiber as an electrode in supercapacitor,” J. Power Sources 142, 382-388(2005).
    33. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian and F. Wei, “A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors,” Adv Mater 22, 3723-3728(2010).
    34. Y. Song, J.-L. Xu and X.-X. Liu, “Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode,” J Power Sources 249, 48-58(2014).
    35. C. C. Hu, K. H. Chang, M.C. Lin and Y. T. Wu, “Design and Tailoring of the Nanotublar Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors,” Nano Lett. 6, 2690-2695(2006).
    36. S. Devaraj and N. Munichandraiah, “Effect of Crystallographic Structure of MnO2 on its Electrochemical Capacitance Properties,” J. Phys. Chem. C 112, 4406-4417(2008).
    37. J. G. Wang, Y. Yang, Z. H. Huang and F. Kang, “Effect of Fe3+ on the Synthesis and Electrochemical Performance of Nanostructured MnO2,” Mater. Chem. Phys. 133, 437-444(2012).
    38. L. Lu, H. Xia, J. Feng, H. Wang and M. O. Lai, “MnO2 Nanotube and Nanowire Arrays by Electrochemical Deposition for Supercapacitors,” J. Power Sources 195, 4410-4413 (2010).
    39. A. Bahloul, B. Nessark, E. Briot, H. Groult, A. Mauger, K. Zaghib and C. M. Julien, “Polypyrrole-covered MnO2 as Electrode Material for Supercapacitor,” J. Power Sources 240, 267-272(2013).
    40. J. Wang, B. Ren, M. Fan, Q. Liu, D. Song and X. Bai, “Hollow NiO Nanofibers Modified by Citric Acid and the Performance as Supercapacitor Electrode,” Electrochim. Acta 92, 197-204(2013).
    41. X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang and L. Liang, “Synthesis of Mesoporous NiO Nanoflake Array and its Enhanced Electrochemical Performance for Supercapacitor Applications,” J. Alloys and Compounds 593, 184-189(2014).
    42. C. Z. Yuan, L. Yang, L. R. Hou, L. F. Shen, F. Zhang, D. K. Li, X. G. Zhang, “Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors,” J. Mater. Chem. 21, 18183-18185(2011).
    43. K. S. Ryu, K. M. Kim, N.-G. Park, Y. J. Park and S. H. Chang, ” Symmetric redox supercapacitor with conducting polyaniline electrodes,” J. Power Sources 103, 305-309(2002).
    44. A. Clémente, S. Panero, E. Spila and B. Scrosati, “Solid-state, polymer-based, redox capacitors,” Solid State Ionics 85, 273-277(1996).
    45. A. Laforgue, P. Simon, C. Sarrazin and J.-F. Fauvarque, “Polythiophene-based supercapacitors,” J. Power Sources 80, 142(1999).
    46. F. Selampinar, U. Akbulut and L. Toppare, “Conducting polymer composites of polypyrrole and polyimide,” Synth. Met. 84, 185-186(1997).
    47. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang and J. J. Zhang, “A review of electrolyte materials and compositions for electrochemical supercapacitors,” Chem. Soc. Rev. 44, 7484-7539(2015).
    48. H. Gao and K. Lian, “Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review,” RSC Adv. 4, 33091-33113(2014).
    49. 胡啟章, “電化學原理與方法(二版),” 五南圖書出版, (2002).
    50. Francois Beguin(著), Elzbieta Frackowiak(著), 張治安(譯), “超級電容器:材料、系統及應用,” 機械工業出版, (2014).
    51. D. S. Yu, K. Goh, H. Wang, L. Wei, W. C. Jiang, Q. Zhang, L. M. Dai and Y. Chen, “Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage,” Nat. Nanotech. 9, 555-562(2014).
    52. W. Zaidi, A. Boisset, J. Jacquemin, L. Timperman and M. Anouti, “Deep Eutectic Solvents Based on N-Methylacetamide and a Lithium Salt as Electrolytes at Elevated Temperature for Activated Carbon-Based Supercapacitors,” J. Phys. Chem. C 118, 4033-4042(2014).
    53. X.-M. Liu, R. Zhang, L. Zhan, D.-H. Long, W.-M. Qiao, J.-H. Yang and L.-C. Ling, “Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte,” New Carbon Mater 22, 153-1588(2007).
    54. B. Huang, X.-Z. Sun, X. Zhang, D.-C. Zhang and Y.-W. Ma, “活性炭基軟包裝超級電容器用有機電解液,” Acta Phys.-Chim. Sin. 29, 1998-2004(2013).
    55. M. Beidaghi and Y. Gogots, “Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of microsupercapacitors,” Energy Environ. Sci. 7, 867-884(2014).
    56. C. W. Shen, X. H. Wang, W. F. Zhang and F. Y. Kang, “A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials,” J. Power Sources 196, 10465-10471 (2011).
    57. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna and P. Simon, “Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon,” Nature Nanotech. 5, 651-654 (2010).
    58. M. Beidaghi and C. Wang, “Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance,” Adv. Funct. Mater. 22, 4501-4510(2012).
    59. E. Eustache, C. Douard, R. Retoux, C. Lethien and T. Brousse, “MnO2 Thin Films on 3D Scaffold: Microsupercapacitor Electrodes Competing with “Bulk” Carbon Electrodes,” Adv. Energy Mater., 1500680(2015).
    60. Y. D. Zhang, B. P. Lin, Y. Sun, P. Han, J. C. Wang, X. J. Ding, X. Q. Zhang and H. Yang, “MoO2@Cu@C Composites Prepared by Using Polyoxometalates@Metal-Organic Frameworks as Template for All-Solid-State Flexible Supercapacitor,” Electrochim. Acta, 188, 490-498(2016).
    61. X. H. Lu, T. Zhai, X. H. Zhang, Y. Q. Shen, L. Y. Yuan, B. Hu, L. Gong, J. Chen, Y. H. Gao, J. Zhou, Y. X. Tong and Z. L. Wang, “WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors,” Adv. Mater. 24, 938-944(2012).
    62. J. Zhou, J. Lian, L. Hou, J. Zhang, H. Gou, M. Xia, Y. Zhao, T. A. Strobel, L. Tao and F. Gao, “Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres,” Nat. Commun. 6, 8503(2015).
    63. T. Qiu, B. Luo, M. Giersig, E. M. Akinoglu, L. Hao, X. Wang, L. Shi, M. Jin and L. Zhi, “Au@MnO2 Core-Shell Nanomesh Electrodes for Transparent Flexible Supercapacitors,” Small 10, 4136-4141(2014).
    64. C. Y. Yang, J. L. Shen, C. Y. Wang, H. J. Fei, H. Bao and G. C. Wang, “All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes,” J. Mater. Chem. A 2, 1458-1464(2014).
    65. Z. Zeng, X. Long, H. Zhou, E. Guo, X. Wang and Z. Hu, “On-chip interdigitated supercapacitor based on nano-porous gold/manganese oxide nanowires hybrid electrode,” Electrochim. Acta 163, 107-115(2015).
    66. W. Si, C. Yan, Y. Chen, S. Oswald, L. Han and O.G. Schmidt, “On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers,” Energy Environ. Sci. 6, 3218-3223(2013).
    67. K. Wang, W. J. Zou, B. Quan, A. F. Yu, H. P. Wu, P. Jiang and Z. X. Wei, “An All-Solid-State Flexible Micro-supercapacitor on a Chip,” Adv. Energy Mater. 1, 1068-1072(2011).
    68. D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet and D. Guay, “Influence of the configuration in planar interdigitated electrochemical micro-capacitors,” J. Power Sources 230 , 230-235(2013).

    QR CODE
    :::