| 研究生: |
陳怡光 Yi-Kuang Chen |
|---|---|
| 論文名稱: |
表面電漿共振移相干涉儀之影像處理系統 Image Processing System of Surface Plasmon Resonance Phase Shift Interferomety |
| 指導教授: |
陳顯禎
Shean-Jen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 相位重建 、表面電漿共振 、移相干涉術 、相位解纏繞 |
| 外文關鍵詞: | phase shift interferomery (PSI), surface plasmon resonance (SPR), phase unwrapping, phase reconstruction |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面電漿共振(surface plasmon resonance,SPR)移相干涉儀(phase shift interferometer,PSI)有別於傳統螢光標定的方法,無須標定(label free)即可用來檢測出微陣列(microarray)生物分子在固體或液體界面發生交互作用時,其介電常數與厚度產生微小的變化,以致造成入射P-wave (偏振方向與入射面平行)經SPR生物感測器後,其空間相位局部變化,經與參考光形成干涉圖形後,再藉由移相干涉術來重建相位變化情形,以利微陣列生物分子交互作用之分析。此方式具有快速、靈敏度高以及大量平行篩檢(high-throughput screening)等優點,其空間相位解析度可達 ,而長時間相位穩定度為 。
本文著重於SPR-PSI之影像處理系統,主要包括兩個部分:1)快速且強健之干涉圖形相位解纏繞(phase unwrapping)演算法之研發;2) 開發微陣列生物分子之幾何位置影像搜尋方法。於干涉圖形相位解纏繞之方法,我們利用cellular automata (CA)演算法與創新的多通道(multichannel) LMS (least mean square)演算法做相位解纏繞,並加以分析比較。CA演算法是屬於與路徑無關的一種相位解纏繞演算法,能夠避免雜訊的干擾,不會將雜訊傳遞下去而造成錯誤的結果;而創新的多通道LMS演算法在進行相位解纏繞時,除了可以避免雜訊之干擾外,更具有其它相位解纏繞演算法所沒有之雜訊濾除的功能。在微陣列生物分子之幾何位置影像搜尋的方法上,我們利用載入所得之相位重建圖形,透過程式邏輯運算,自動地搜尋微陣列生物分子所在的位置,並且分析各點生物分子的相位變化量。
Biomolecular interaction analysis (BIA) using surface plasmon resonance phase shift interferomety (SPR-PSI) is different from that with traditional fluorescent labelling method. SPR-PSI can measure the spatial phase variation of a resonantly reflected light in microarray biomolecular interaction in the interface between solid and liquid without labelling. The tiny change of thickness and dielectric constant of analyte will cause a spatial phase variation of reflected P-wave from SPR biosensers. Based on this phenomenon, the reference light (S-wave) and the measurement (P-wave) can interfere each other to produce interferograms which can be utilized to analysis the interaction of microarray biomolecules. This technique has many merits like promptness, high sensitivity, and high-throughput screening; moreover, the spatial phase resolution can achieve the angular range of and the long time stability is around the angular range of .
This thesis is focused on the development of SPR-PSI image processing system, it consisted of two major portions: 1) the research and development of fast and robust method for phase reconstruction of interferograms; 2) to a geometrical position searching algorithm for microarray biomolecules. In the first part of work, we employed both cellular automata algorithm (CA) and a novel multichannel least mean square (LMS) algorithm to unwrap the phase of interferograms and made subsequent analysis related to biomolecules vhange along the sensing interface of SPR-PSI. The CA algorithm is a path independent phase unwrapping method with the ability to reject noise resulted from image source. In the other hand, the novel multichannel LMS algorithm has advantages not only the ability to reject noise incurred from measuring process, but also the ability of filtering noiseinherented in original source image. In the development of image searching method of microarray biomolecular, we first obtained reconstruction phase diagram, then we are able to automatically locate the true location of microarray biomolecules and determine the phase value by in-house program logic analysis.
[1] 許鋒銘, 表面電漿共振影像系統於DNA微陣列雜交探測, 國立中央大學機械工程研究所碩士論文, 6月(2002).
[2] D. Malacara, Optical Shop Testing, Second Edition, chap 14, John Wiley & Sons, Inc. (1992).
[3] P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Applied Optics, Vol. 26, No. 13, pp.2504-2505 (1987).
[4] D.C. Ghiglia and M.D. Pritt, Two-dimensional phase unwrapping: Theory, algorithms and software, John Wiley & Sons, Inc. (1998).
[5] R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry : two-dimensional phase unwrapping,” Radio Science, Vol.23, No.4, pp.713-720 (1988).
[6] J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Applied Optics, Vol. 28, No. 15, pp. 3268-3270 (1989).
[7] R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Applied Optics, Vol.34, No. 5, pp.781-789 (1995).
[8] J. R. Buckland, J. M. Huntley, and S. T. E. Turner, “Unwrapping noisy phase maps by use of a minimum cost matching algorithm,” Applied Optics, Vol.34, No. 23, pp.5100-5108 (1995).
[9] D. J. Bone, “Fourier fringe analysis: the Two-dimensional phase unwrapping problem,” Applied Optics, Vol. 30, No. 25, pp. 3627-3632 (1991).
[10] Y. Xu and C. Ai, “Simple and effective phase unwrapping technique,” proc. SPIE, Vol. 2003, Society of Photo-Optical Instrumentation Engineers, pp.254-263 (1993).
[11] J. A. Quiroga, A. Gonz’alez-Cano, and E. Bernabeu, “Phase-unwrapping algorithm based on an adaptive criterion,” Applied Optics, Vol. 34, No.14, pp. 2560-2563 (1995).
[12] H. Lim, W. Xu, and X. Huang, “Two new practical methods for phase unwrapping,” proceedings of the International Geoscience and Remote Sensing Symposium, Tokyo, Japan, August 18-21, IEEE, Piscataway, NJ, pp.196-198 (1995).
[13] W. Xu and I. Cumming, “A region growing algorithm for InSAR phase unwrapping,” IEEE, Piscataway, NJ, pp. 2044-2046, (1996).
[14] D. Derauw, “Phase unwrapping using coherence measurements,” Synthetic Aperture Radar and Passive Microwave Sensing, Proc. SPIE, Vol. 2584, pp. 319-324 (1995).
[15] D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am. A 4, PP. 267-280 (1987).
[16] 蘇木春與張孝德編著, 機器學習類神經網路、模糊系統及基因演算法則, 二版, 全華圖書科技, (2002).
[17] 王進德與蕭大全編著, 類神經網路與模糊控制理論入門, 全華圖書科技, (2002).
[18] 林昇甫與洪成安編著, 神經網路入門與圖樣辨識, 修訂二版, 全華圖書科技, (2002).
[19] B. Widrow and S. Strarns, Adaptive Signal Processing, Prentice Hill (1985).
[20] R. Jain, R. Krian, and B. G. Schunck, Machine Vision, McGraw-Hill, Inc. (1995)
[21] http://w3.cc.ncu.edu.tw/%7Ewychen/ev_index.htm
[22] http://www.u-vision-biotech.com/