跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃韻如
Yun-Ru Huang
論文名稱: 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
Investigating the Passivation Effect of Wet Oxidation Treatment on Silicon Solar Cells
指導教授: 陳一塵
I-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 鈍化氧化矽太陽能電池
外文關鍵詞: passivation, silicon oxide, solar cell
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用濕式氧化法,浸泡矽晶圓在68 %的硝酸溶液中製備氧化矽薄膜 (nitric acid oxidation of silicon),搭配電子迴旋共振化學氣相沉積(electron cyclotron resonance chemical vapor deposition, ECRCVD)成長氮化矽薄膜堆疊於太陽能電池上,以達到表面鈍化的效果,探討其薄膜特性與其應用於元件上的表現。利用硝酸生成的氧化矽薄膜厚度在 1 ~ 2 nm 之間,與高溫成長的氧化矽相比,在很薄的情況下可以得到較高的緻密性和較低的漏電密度。
    由於硝酸鈍化所形成的氧化層中,帶了少許的水氣與其他雜質,造成元件的不穩定與表面缺陷的產生。因此我們在硝酸形成氧化層之後,利用爐管通入不同的氣體修補表面的缺陷和去除水氣,經由電容-電壓量測和電流-電壓量測可得到氧化層的穩定度有進一步的提升。
    本研究將針對在硝酸成長之氧化矽薄膜,在不同時間及熱處理下電容值的變化,分析氧化矽的性質。而後將氧化矽上堆疊氮化矽薄膜量測其載子生命週期,經由適當的熱處理可量測到載子生命週期達1700 us。最後將薄膜研究結果應用在單晶矽太陽能電池上,目前初步得到太陽能電池轉換效率(η) = 11.18 %;開路電壓(Voc) = 532 mV;短路電流(Jsc) = 36.72 mA/cm2;填充因子(FF) = 60.01 %。


    In this study, we use wet oxidation to form silicon oxide films on silicon wafer in 68 % nitric acid. Electron cyclotron resonance chemical vapor deposition (ECRCVD) is used to growth silicon nitride films. We cap silicon nitride film on silicon oxide film, and to explore the film characteristics and the performance of monocrystalline silicon solar cells. The thicknesses of the silicon oxide layers grown under nitric acid is about 1~2 nm. Compare with the thermal growth of silicon oxide, the thin silicon oxide layers grown under nitric acid has high density quality and low leakage current.
    It has some surface defect in the thin silicon oxide layers grown under nitric acid. After preparing silicon oxide layers grown under nitric acid, we add different gas to the furnace for thermal anneal to remove surface defect. We can know the quality of silicon oxide layers by capacitance-voltage and current-voltage measurement.
    We investigate the change of capacitance in the silicon oxide layers grown under nitric acid with thermal annealing at different temperature. For the devices passivated by silicon oxide and silicon nitride, we can know that the lifetime elevates to 1700 us. Finally, we fabricate monocrystalline silicon solar cell with the optimized recipe of the passivation layer from the result that we investigated, and there we have the electro-optic convert efficiency = 11.18%, the open-circuit voltage (Voc) = 532 mV, short-circuit current density (Jsc) = 36.72 mA/cm2,and the fill factor (FF) = 60.01%.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 前言 1 第二章 文獻回顧 2 2.1 矽晶太陽能電池基本原理 2 2.1.1 太陽光光譜 2 2.1.2 太陽能電池的重要參數 3 2.2 表面鈍化膜之相關理論 9 2.2.1 缺陷及表面鈍化 9 2.2.2 硝酸鈍化 12 2.2.3 介面電荷密度測量與計算 15 2.2.4 載子生命週期量測 16 第三章 實驗流程 17 3.1 利用硝酸製備二氧化矽薄膜 17 3.2熱處理氧化矽薄膜 18 3.3製備氧化矽薄膜 18 3.4 元件製作流程 20 3.4.1 Metal-oxide-semiconductor (MOS) capacitor結構製作流程 20 3.4.2 太陽能電池結構製作流程 21 3.5 熱處理前後之薄膜特性分析與電池表現 23 3.5.1 光電子能譜儀 (x-ray photoelectron spectroscopy, XPS) 23 3.5.2 橢圓儀 (ellipsometer) 23 3.5.3 高頻capacitance-voltage 量測儀器 23 3.5.4 有效載子生命週期量測儀器 24 3.5.5 量子轉換效率(quantum efficiency, QE) 24 3.5.6 太陽模擬光量測系統(solar simulator) 24 第四章 結果與討論 26 4.1 氧化矽薄膜性質分析 26 4.1.1 利用橢圓儀量測氧化矽薄膜 26 4.1.2利用光電子能譜儀量測氧化矽薄膜 27 4.2 不同退火溫度和氣氛下氧化矽薄膜之特性分析 28 4.2.1 未經退火處理之氧化矽薄膜電性量測 28 4.2.2 經退火處理之氧化矽薄膜電性量測 30 4.3 兩階段硝酸處理之氧化矽薄膜電性分析 39 4.4 氧化矽上沉積氮化矽薄膜之載子生命週期量測 41 4.4.1 未經熱處理之氧化矽和氮化矽薄膜載子生命週期量測 41 4.4.2 經熱處理之氧化矽和氮化矽薄膜載子生命週期量測 43 4.4.3 沉積氧化矽和氮化矽薄膜在矽基板上進行熱處理載子生命週期量測 44 4.5 太陽能電池效率比較 47 第五章 結論 51 參考文獻 52

    1. Muramatsu, S., et al., Effect of hydrogen radical annealing on SiN passivated solar cells. Solar Energy Materials and Solar Cells, 2001. 65(1-4): p. 599-606.
    2. Lee, Y., et al., Stability of SiNX/SiNX double stack antireflection coating for single crystalline silicon solar cells. Nanoscale Research Letters, 2012. 7: p. 1-6.
    3. Dauwe, S., et al., Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Progress in Photovoltaics, 2002. 10(4): p. 271-278.
    4. Salemi, S., et al., The effect of defects and their passivation on the density of states of the 4H-silicon-carbide/silicon-dioxide interface. Journal of Applied Physics, 2013. 113(5).
    5. Chang, L.S., P.L. Gendler, and J.H. Jou, Thermal, mechanical and chemical effects in the degradation of the plasma-deposited alpha-rich passivation layer in a multilayer thin-film device. Journal of Materials Science, 1991. 26(7): p. 1882-1890.
    6. Jang, J.H. and K.S. Lim, Post hydrogen treatment effects of boron-doped a-SiC:H p-layer of a-Si:H solar cell using a mercury-sensitized photo-chemical vapor deposition method. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1997. 36(10): p. 6230-6236.
    7. Sepeai, S., et al., Surface passivation studies on n+pp+ bifacial solar cell. International Journal of Photoenergy, 2012.
    8. Schwab, C., et al., Recombination and optical properties of wet chemically polished thermal oxide passivated si surfaces. Ieee Journal of Photovoltaics, 2013. 3(2): p. 613-620.
    9. Grant, N.E. and K.R. McIntosh, Low surface recombination velocity on (100) silicon by electrochemically grown silicon dioxide annealed at low temperature. Ieee Electron Device Letters, 2010. 31(9): p. 1002-1004.
    10. Mihailetchi, V.D., Y. Komatsu, and L.J. Geerligs, Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells. Applied Physics Letters, 2008. 92(6).
    11. Pincik, E., et al., On interface properties of ultra-thin and very-thin oxide/a-Si : H structures prepared by oxygen based plasmas and chemical oxidation. Applied Surface Science, 2007. 253(16): p. 6697-6715.
    12. Mizushima, S., et al., Nitric acid method for fabrication of gate oxides in TFT. Applied Surface Science, 2008. 254(12): p. 3685-3689.
    13. Kobayashi, H., et al., Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density. Journal of Applied Physics, 2003. 94(11): p. 7328-7335.
    14. Asuha, et al., Nitric acid oxidation of silicon at similar to 120 ℃ to form 3.5-nm SiO2/Si structure with good electrical characteristics. Applied Physics Letters, 2004. 85(17): p. 3783-3785.
    15. Asuha, et al., Postoxidation annealing treatments to improve Si/ultrathin SiO2 characteristics formed by nitric acid oxidation. Journal of the Electrochemical Society, 2004. 151(12): p. G824-G828.
    16. Pelanchon, F., P. Mialhe, and J.P. Charles, The photocurrent and the open-circuit voltage of a silicon solar-cell. solar cells, 1990. 28(1): p. 41-55.
    17. Schimpe, R., Theory of reflection at the facet of a semiconductor-laser. Aeu-Archiv Fur Elektronik Und Ubertragungstechnik-International Journal of Electronics and Communications, 1992. 46(2): p. 80-85.
    18. Sharma, S.K., et al., Determination of solar-cell parameters - an analytical approach. Journal of Physics D-Applied Physics, 1993. 26(7): p. 1130-1133.
    19. Aberle, A.G., Surface passivation of crystalline silicon solar cells: A review. Progress in Photovoltaics, 2000. 8(5): p. 473-487.
    20. Choi, S.J., et al., The electrical properties and hydrogen passivation effect in mono crystalline silicon solar cell with various pre-deposition times in doping process. Renewable Energy, 2013. 54: p. 96-100.
    21. Karunagaran, B., et al., Effect of rapid thermal annealing on the properties of PECVD SiN(x) thin films. Materials Chemistry and Physics, 2007. 106(1): p. 130-133.
    22. Blakers, A., High-efficiency crystalline silicon solar-cells. Festkorperprobleme-Advances in Solid State Phyics, 1990. 30: p. 403-423.
    23. Ben Rabha, M., et al., Monocrystalline silicon surface passivation by Al2O3/porous silicon combined treatment. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2013. 178(9): p. 695-697.
    24. Seguini, G., et al., Si surface passivation by Al2O3 thin films deposited using a low thermal budget atomic layer deposition process. Applied Physics Letters, 2013. 102(13).
    25. Liang, W.S., et al., Surface passivation of boron-diffused p-type silicon surfaces with (100) and (111) orientations by ald Al2O3 layers. Ieee Journal of Photovoltaics, 2013. 3(2): p. 678-683.
    26. Takahashi, M., et al., Ultrathin silicon oxynitride formed by low-energy electron impact plasma nitridation and chemical oxidation methods. Journal of Applied Physics, 2003. 94(1): p. 726-731.
    27. Asuha, et al., Formation of 10-30 nm SiO2/Si structure with a uniform thickness at similar to 120 ℃ by nitric acid oxidation method. Surface Science, 2006. 600(12): p. 2523-2527.
    28. Koukab, A., A. Bath, and E. Losson, An improved high frequency C-V method for interface state analysis on MIS structures. Solid-State Electronics, 1997. 41(4): p. 635-641.
    29. Kobayashi, H., et al., Nitric acid oxidation of Si (NAOS) method for low temperature fabrication of SiO2/Si and SiO2/SiC structures. Applied Surface Science, 2010. 256(19): p. 5744-5756.
    30. Asuha, et al., Spectroscopic and electrical properties of ultrathin SiO2 layers formed with nitric acid. Surface Science, 2003. 547(3): p. 275-283.

    QR CODE
    :::