跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李念青
Nien-ching Lee
論文名稱: 利用WRF-FSO系統探討掩星資料對颱風預報的影響
指導教授: 黃清勇
Ching-yuang Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 64
中文關鍵詞: 觀測影響伴隨模式掩星觀測
外文關鍵詞: observation impact, adjoint model, GPS RO
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去計算預報系統的誤差使用的是傳統觀測系統實驗的方法,近年多利用伴隨系統計算預報敏感度的方式來估計在短期預報中的觀測資料對誤差影響。本研究使用觀測資料的預報敏感度做為診斷工具來監測觀測資料在短期預報中的影響。
    觀測資料來源主要使用福衛三號的真實掩星觀測(FORMOSAT-3/COSMIC)、福衛七號的模擬掩星觀測(FORMOSAT-7/COSMIC-2)和傳統地面站觀測資料(GTS)。對於2009莫拉克颱風以及2013海燕颱風分別進行12小時和24小時兩組實驗,其中針對掩星觀測做垂直分層分析,以互相比較福衛七號升空後與現行福衛三號之觀測改善程度的差異,且另外進行48小時預報作為參考。
    伴隨模式的結果顯示,同化觀測資料對於颱風預報大部分具有正面的貢獻,在兩個颱風個案中, FORMOSAT-7/COSMIC-2表現較 FORMOSAT-3/COSMIC佳,對於擾動動能的正貢獻主要來自11000公里以上的高層。在使用完整物理參數化過程的48小時預報中,莫拉克颱風模擬結果顯示兩種掩星資料對於颱風預報並無太大分別,而在海燕颱風模擬中,FORMOSAT-7/COSMIC-2相比FORMOSAT-3/COSMIC路徑誤差可以再修正約10%左右。
      伴隨模式雖然可同時提供多組觀測資料對於颱風預報的比較,但是其計算過程使用簡化過的模式,另外對於颱風來說,目標區域的選取是否能代表颱風駛流場、區域內海陸分布以及價值函數的選取等,都增加了結果的不確定性。


    Observing System Simulation Experiments (OSSEs) are used to investigate current observational and data assimilation systems by testing the impact of new observations on them. Another robust tool has been developed as an adjoint-based model for assessing the impact of observations. This study use WRF-FSO system to understand their impact on short-range forecast error.
    The case chosen for the study are the typhoon Morakot (2009) and typhoon Haiyan (2013) with FORMOSAT-3/COSMIC GPS radio occultation refractivity data, simulated FORMOSAT-7/COSMIC-2 GPS RO data and GTS data. Two sets of experiments, 12-h and 24-h, have been designed to compare the RO data in vertical layers. We make a 48-h forecast for reference in addition.
    In the WRF-FSO experiment, it was found that FORMOST-7/COSMIC-2 is better than FORMOSAT-3/COSMIC data. The impact results indicate that larger impacts of GPS RO data are on upper levels for perturbation kinetic energy. In the 48-h forecast with full physics, Using FORMOST-7/COSMIC-2 RO data can improve about 10% in typhoon Haiyan track prediction than using FORMOST-3/COSMIC RO data.
    Although adjoint model can provide the Forecast sensitivity to observation at one time, but the measure still has some problem. First, it estimate the impact by simplified scheme and model. Second, we are not sure if the target zone can stand for the steering-flow region. Third, the land-sea distribution and cost function will affect the experiment result possibly. These problems increase the uncertainty of the result.

    中文摘要 i 英文摘要 ii 目錄 iii 圖表目錄 iv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 4 第二章 研究方法及資料處理 6 2.1 研究方法 6 2.2 全球導航衛星系統與掩星觀測 6 2.3 二維射線追蹤模式 8 2.4 WRF-FSO系統 9 第三章 莫拉克颱風模擬 12 3.1 個案介紹 12 3.2 實驗設計 12 3.3 模擬結果與討論 14 3.3.1 12小時實驗 14 3.3.2 24小時實驗 15 3.3.3 48小時路徑預報 16 第四章 海燕颱風模擬 17 4.1 個案介紹 17 4.2 實驗設計 17 4.3 模擬結果與討論 18 4.3.1 12小時實驗 19 4.3.2 24小時實驗 20 4.3.3 48小時路徑預報 20 第五章 總結與未來展望 22 參考文獻 24 附表與附圖 30

    王潔如,2004:侵台颱風之GPS折射率3DVAR資料同化及數值模擬。國立中央大學,大氣物理研究所,碩士論文,108頁。
    吳俊澤,2007:利用MM5 4DVAR模式同化掩星折射率資料及虛擬渦旋探討颱風數值模擬之影響。國立中央大學,大氣物理研究所,碩士論文,70頁。
    呂佳龍,2010:同化GPS掩星及其他觀測資料對梅雨模擬之影響。國立中央大學,大氣物理研究所,碩士論文,118頁。
    周濤,2006:利用WRF 3DVAR同化GPS折射率資料探討對於颱風預報的影響。國立中央大學,大氣物理研究所,碩士論文,89頁。
    迮嘉欣,2009:資料同化對台灣地區颱風和梅雨模擬之影響。國立中央大學,大氣物理研究所,碩士論文,81頁。
    陳怡孜,2013:GNSS RO觀測資料對颱風莫拉克預報之影響:觀測系統模擬實驗。國立中央大學,大氣物理研究所,碩士論文,89頁。
    陳舒雅,2008:GPS掩星觀測資料同化及對區域天氣預報模擬之影響。國立中央大學,大氣物理研究所,博士論文,137頁。
    黃振興,2011:同化FORMOSAT-3/COSMIC及Follow-on掩星觀測資料對颱風預報之影響。國立中央大學,大氣物理研究所,碩士論文,92頁。
    黃清勇、王潔如,2008:衛星遙測資料三維變分同化對於颱風模擬的影響。大氣科學,36,249-273。
    黃清勇、朱延祥,2004:FORMOSAT-3/COSMIC科學研究簡介。大氣科學,32,293-328。
    黃清勇、周濤、郭勉之,2007:GPS掩星折射率資料同化對於颱風模擬之影響。大氣科學,35,135-150。
    曾忠一,2006:大氣科學中的反問題。國立編譯館主編及出版,1288頁。
    蔡金成,2009:衛星資料與虛擬渦旋四維變分同化對颱風數值模擬的影響。國立中央大學,大氣物理研究所,碩士論文,87頁。
    Aberson, S. D., 2002: Two Years of Operational Hurricane Synoptic Surveillance. Wea. Forecasting, 17, 1101–1110.
    Aberson, S. D., 2003: Targeted Observations to Improve Operational Tropical Cyclone Track Forecast Guidance. Mon. Wea. Rev., 131, 1613-1628
    Anthes, R. A., and T. T. Warner, 1978: Development of hydrodynamic models suitable
    for air pollution and other mesometeorological studies. Mon. Wea. Rev., 106, 1045–1078.
    Anthes, R. A., C. Rocken, and Y.-H. Kuo, 2000: Applications of COSMIC to meteorology
    and climate. Terr. Atmos. Oceanic Sci., 11, 115-156.
    Auligné, T., Forecast Sensitivity to Observations & Observation Impact, WRFDA Tutorial, NCAR
    Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast. Q. J. R. Meteorol.Soc.,135,239-250.
    Cardinali, C., Towards an adaptive observation network: monitoring the observations impact in ECMWF forecast, Training course 2010, ECMWF
    Chen, S.-H., F. Vandenberghe, and C.-Y. Huang, 2006: Error characteristics of GPS retrieved refractivity using a simulation study. J. Meteor. Soc. Japan, 84, 477-496.
    Cucurull, L. and J.C. Derber, 2008: Operational implementation of COSMIC observations into NCEP’s global data assimilation system. Wea. Forecasting., 23, 702-711.
    Cucurull, L., 2010: Improvement in the Use of an Operational Constellation of GPS Radio Occultation Receivers in Weather Forecasting. Wea. Forecasting., 25, 749–767.
    Cucurull, L., J.C. Derber, R. Treadon and R.J. Purser, 2007: Assimilation of Global Positioning System radio occultation observations into NCEP’s Global Data Assimilation System. Mon Wea. Rev., 135, 3174-3193.
    Cucurull, L., J.C. Derber, R. Treadon and R.J. Purser, 2008: Preliminary impact studies using global positioning system radio occultation profiles at NCEP. Mon. Wea. Rev., 136, 1865-1877.
    Cucurull, L., Y.-H. Kuo, D. Barker, and S. R. H. Rizvi,2006: Assessing the impact of simulated COSMIC GPS radio occultation data on weather analysis over the Antarctic: A case study. Mon. Wea. Rev., 134, 3283-3296.
    Errico, R. M., 2007: Interpretations of an adjoint-derived observational impact measure. Tellus , 59A, 273–276.
    Fujita, T., 1952: Pressure distribution within a typhoon. Geophys. Mag., 23, 437-451.
    Gelaro, R., Zhu Y., 2009: Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus A., 61A, 179-193
    Grell, G. A., J. Dudhia and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR mesoscale model(MM5). NCAR Technical Note, 34 NCAR/TN-398+STR, 117 pp.
    Healy S. and J.-N. Thépaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteorol. Soc., 132, 605–623.
    Healy, S. B., 2008: Forecast impact experiment with a constellation of GPS radio occultation receivers. Atmos. Sci. Lett., 9, doi:10.1002/asi.169.
    Huang, C.-Y., Y.-H. Kuo, S.-H. Chen and F. Vandenberghe, 2005: Improvements on typhoon forecast with assimilated GPS occultation refractivity. Wea. Forecasting., 20, 931–953.
    Kravtsov, Y. A., and Y. I. Orlov, Geometrical Optics of Inhomogeneous Media, 312 pp., Springer-Verlag, New York, 1990.
    Kueh, M.-T., C.-Y. Huang, S.-Y. Chen, S.-H. Chen and C.-J. Wang 2008: Impact of GPS radio occultation soundings on prediction of Typhoon Bilis (2006) landfalling Taiwan. Terr. Atmos. Oceanic Sci., 20, 115–131.
    Kuo, Y.-H., H. Liu, Y.-R. Guo, C.-T. Terng, and Y.-T. Lin, 2008: Impact of 35 FORMOSAT-3/COSMIC Data on Typhoon and Mei-yu Prediction, National Taiwan University (NTU) Department of Atmospheric Sciences 50th Anniversary Book.
    Kuo, Y.-H., S. V. Sokolovskiy, R. A. Anthes, and F. Vandenberghe, 2000: Assimilation of GPS radio occultation data for numerical weather prediction. Terr. Atmos. Oceanic Sci., 11, 157-186.
    Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507-531.
    Kuo, Y.-H., W. S. Schreiner, J. Wang, D. L. Rossiter, Y. Zhang, 2005: Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett., 32, L05817, doi:10.1029/2004GL021443.
    Kuo, Y.-H., X. Zou, and W. Huang, 1997: The impact of GPS data on the prediction of an extratropical cyclone: An observing system simulation experiment. J. Dyn. Atmos. Ocean, 27, 413-439.
    Kuo, Y.-H., X. Zou, S.-J. Chen, Y.-R. Guo, W. Huang, R. Anthes, D. Hunt, M. Exner, C. Rocken, S. Sokilovskiy, 1998: A GPS/MET sounding through an intense upper-level front, Bull. Amer. Met. Soc., 79, 617-626.
    Kursinki, E. R., G. A. Hajj, K. R. Hardy, L. J. Romans, and J. T. Schofield, 1995:Observing tropospheric water vapor by radio occultation using the global positioning system. Geophs. Res. Letter, 22, 2365-2368.
    Kursinski, E. R., G. A. Hajj, S. S. Leroy, and B. Herman, 2000: The GPS 37 radio occultation technique. Terr. Atmos. Oceanic Sci., 11, 53-114.
    Langland, R. H., and N. L. Baker , 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus , 56A, 189–201.
    Langland, R. H., 2005: Issues in targeted observing. Q. J. R. Meteorol. Soc., 131, 3409-3425
    Leroy, S. S., 1997: Measurement of geopotential height by GPS radio occultation, J. Geophys. Res., 102, 23,429-23,465.
    Liu, H., J. L. Anderson, Y.-H. Kuo, and K. Raeder, 2007: Importance offorecast error multivariate correlations in idealized assimilation of GPS radio occultation data with the Ensemble Adjustment filter, Mon. Wea. Rev., 135,173-185.
    Liu, H., J. L. Anderson, Y.-H. Kuo, C. Snyder, and A Caya, 2008: Evaluation of a nonlocal quasi-phase observation operator in assimilation of CHAMP radio occultation refractivity with WRF, Mon. Wea. Rev., 136, 242-256.
    Neumann, C. J., 1993: Global overview. Chapter 1, Global Guide to Tropical Cyclone Forecasting. WMO, 1.1-1.56.
    Park K. amd X. Zou, 2004: Toward developing an objective 4DVAR BDA scheme for hurricane initialization based on TPC observed parameters. Mon. Wea. Rev., 132, 2054-2069.
    Parrish, D. F., and J. C. Derber, 1992: The national meteorological center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763.
    Rocken, C., R. Anthes, M. Exner, D. Hunt, S. Sokolovskiy, R. Ware, M. Gorbunov, W. Schreiner, D. Feng, B. Herman, Y.-H. Kuo, and X. Zou, 1997: Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102, 29849-29866.
    Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: Adescription of the advanced research WRF version 3. NCAR technical note NCAR/TN–475+STR, 113 pp.
    Smith, E. K., and S. Weintraub, 1953: The constants in the equation of atmospheric refractive indix at radio frequencies. Proc. IRE (Inst. Radio. Eng.), 41, No. 8, 1035-1037.
    Thayer, D., 1974: An improved equation for the radio refractive index of air. Radio Sci., 9, 803-807.
    Ware, R. et al., 1996: GPS sounding of the atmosphere from low eatth orbit: preliminary results. Bull. Amer. Meteor. Soc., 77, 19-40.
    Wee, T.-K., and Y.-H. Kuo, 2005: Assimilation of CHAMP and SAC-C radio occultation data using MM5 4D-VAR. Joint NCAR/MMM CSU/CIRA Data Assimilation Workshop, Sept. 19th 2005, in Boulder, Colorado.
    Wee, T.-K., Y.-H. Kuo, D. H. Bromwich, A. J. Monaghan, 2008: Assimilation of GPS Radio Occultation Refractivity Data from CHAMP and SAC-C Missions over High Southern Latitudes with MM5 4DVAR. Mon. Wea. Rev., 136, 2923–2944.
    Zou, X., B. Wang, H. Liu, R. A. Anthes, T. Matsumura, and Y.-J. Zhu, 2000: Use of GPS/MET refraction angles in 3D variational analysis. Quart. J. Roy. Meteor. Soc., 126, 3013-3040.
    Zou, X., F. Vandenberghe, B. Wang, M. E. Gorbunov, Y.-H. Kuo, S. Sokolovskiy, J. C. Chang, J. G. Sela, and R. Anthes, 1999: A raytracing operator and its adjoint for the use of GPS/MET refraction angle measurements. J. Geophys. Res., 104, 22301-22318.
    Zou, X., Y.-H. Kuo, and Y.-R. Guo, 1995: Assimilation of atmospheric radio 36 refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123, 2229-2249.
    Zou, X.,W. Huang and Q. Xiao, 1997: A user’s guide to the MM5 adjoint modeling system. NCAR TN-437+IA. MMM division, NCAR, 92pp. (available from UCAR Communications, P.O. Box 3000, Boulder, CO80307.)

    QR CODE
    :::