跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡筱臻
Hsiao-Chen Chien
論文名稱: 氣象環境對臺灣2018-2021冬春季節PM2.5濃度的影響
Impact of meteorological environment on PM2.5 in Taiwan during the winter-spring season 2018-2021
指導教授: 鄭芳怡
Fang-Yi Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 89
中文關鍵詞: 細懸浮微粒聖嬰-南方震盪
外文關鍵詞: PM2.5, ENSO
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣污染問題除了人為排放影響外,氣象條件則在空氣污染的擴散、稀釋及傳輸上扮演著重要角色。過去研究主要關注綜觀至中小尺度天氣系統對空污問題的影響,而大尺度氣象環境對臺灣空污問題的影響則較少被討論。因此本研究藉由2018-2020十二月至隔年三月冬春季的觀測資料分析與WRF-CMAQ模式進行固定人為排放量的數值實驗,聚焦探討多尺度氣象環境對年際間PM2.5濃度的影響,目的在於增進對東亞大尺度氣象環境與臺灣空氣品質關聯的了解並提升中長期空品預報能力。
    根據NOAA公布的ONI index,2018/19、2019/20及2020/21分別為聖嬰年、正常年與反聖嬰年。2020/21年因反聖嬰現象下西太平洋的相對低壓環流結構特徵明顯使臺灣綜觀東風分量增加,造成靜風天數增加、風速下降。同時東亞地區氣溫偏冷、水氣偏少,進而在探空觀測結果也顯示出大氣垂直結構穩定、邊界層不易發展的特性。2020/21年臺灣PM2.5濃度相較於過去兩年聖嬰與正常年時呈現高峰期遲滯且濃度增加的現象。由於模擬氣象場能有效掌握氣象特性,將空品模擬資料針對不同天氣型態進行分類討論後,其結果證明若三年間的排放量相同,則不同的氣象環境能顯著影響PM2.5濃度差異。若不考慮臺灣境內排放的話,臺灣冬春季期間PM2.5濃度的平均背景值約為4-6微克/立方公尺。2020/21年時,由於反聖嬰現象時中國東南方污染物濃度較高,伴隨著增強的氣壓梯度,使得臺灣在東北季風天氣下境外污染貢獻較過去2年多達約6微克/立方公尺。境內污染方面,模式中模擬的氣溫偏低、東風分量增加、低風速、邊界層高度低等穩定的大氣環境說明了在所有的天氣型態下境內PM2.5濃度累積也有較過去2年增加的現象。


    In addition to the anthropogenic emissions, the meteorological conditions also play an important role in the diffusion, dilution and transport of air pollutants. Previous studies mainly focused on the relationship between meso-scale weather systems and air pollution problems. However, the influence of large-scale circulation systems to air pollution in Taiwan is less discussed. Therefore, the study focused on discussing the impact of multi-scale meteorological environments to inter-annual variability of PM2.5 concentration in Taiwan during the winter-spring season (DJFM) of 2018-2020 by data analysis and WRF-CMAQ modeling with fixed anthropogenic emissions. The objectives of the study are to gain a deeper understanding of the connections to large-scale environment and air quality and to enhance the ability of mid-term air quality forecast.
    According to Ocean Nino index from NOAA, the winter seasons in 2018/19, 2019/20, and 2020/21 were affected by El Nino, neutral and La Nina circulations, respectively. In 2020/21, cyclonic anomaly was obviously found in 2020/21 winter in area of Taiwan which leads to frequent occurrence of the easterly prevailing wind. Moreover, weaker wind speed, cooler environmental temperature and more stable atmospheric structure were observed in western Taiwan. The observation air quality data revealed a worsened PM2.5 concentration in February and March of 2021 instead in January like past years shown. After classifying the simulated data according to different synoptic weather types, the results prove that different meteorological environments indeed influence the PM2.5 concentration under the same anthropogenic emission. Without considering the domestic emission, the average background PM2.5 concentration is approximately 4-6 μg/m3. Under the La Nina, the long-range-transport pollutants from China which accumulated more along the coast transported with the north-south orientation moved airmass to Taiwan under northeasterly synoptic weather type. The long-range transported PM2.5 concentration increased 6 μg/m3 than past two years. Meanwhile, the domestic PM2.5 contribution was also degraded in winter-spring season of 2021 due to the increased easterly wind, weakened wind flow and enhanced atmospheric stability under all synoptic weather types influenced by La Nina environment.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 vii 表目錄 xiii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 6 第二章 資料來源與研究方法 7 2-1 資料來源 7 2-2 研究方法 9 2-3 模式介紹與設定 10 3-2-1 WRF氣象模式 10 3-2-2 CMAQ空氣品質模式 12 第三章 觀測資料分析 14 3-1 臺灣各空品區空品概況分析 14 3-2 近三年系統環流結構特徵 21 3-3 觀測氣象場分析 28 第四章 數值實驗模擬結果分析與討論 41 4-1 WRF模式與觀測結果比較 41 4-2 模擬結果討論 45 第五章 結論與未來展望 61 5-1 結論 61 5-2 未來展望 63 參考文獻 64

    梁婉琪(2022)。局地大氣剖面特徵及其對空氣品質的影響。國立中央大學碩士論文。
    An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., & Ji, Y. (2019). Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proc Natl Acad Sci U S A, 116(18), 8657-8666. https://doi.org/10.1073/pnas.1900125116
    Bae, M., Kim, B.-U., Kim, H. C., Kim, J., & Kim, S. (2021). Role of emissions and meteorology in the recent PM2.5 changes in China and South Korea from 2015 to 2018. Environmental Pollution, 270. https://doi.org/10.1016/j.envpol.2020.116233
    Binkowski, F. S., & Roselle, S. J. (2003). Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. Journal of Geophysical Research: Atmospheres, 108(D6). https://doi.org/https://doi.org/10.1029/2001JD001409
    Cai, Z., Jiang, F., Chen, J., Jiang, Z., & Wang, X. (2018). Weather Condition Dominates Regional PM2.5 Pollutions in the Eastern Coastal Provinces of China during Winter. Aerosol and Air Quality Research, 18(4), 969-980. https://doi.org/10.4209/aaqr.2017.04.0140
    Chang, L., Xu, J., Tie, X., & Wu, J. (2016). Impact of the 2015 El Nino event on winter air quality in China. Scientific Reports, 6, 34275. https://doi.org/10.1038/srep34275
    Cheng, F. Y., & Hsu, C. H. (2019). Long-term variations in PM2.5 concentrations under changing meteorological conditions in Taiwan [Article]. Scientific Reports, 9, 12, Article 6635. https://doi.org/10.1038/s41598-019-43104-x
    Cheng, F. Y., Chin, S. C., & Liu, T. H. (2012). The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area [Article]. Atmospheric Environment, 54, 714-727. https://doi.org/10.1016/j.atmosenv.2012.01.029
    Chuang, M. T., Lee, C. T., & Hsu, H. C. (2018). Quantifying PM2.5 from long-range transport and local pollution in Taiwan during winter monsoon: An efficient estimation method [Article]. Journal of Environmental Management, 227, 10-22. https://doi.org/10.1016/j.jenvman.2018.08.066
    Fosu, B. O., Wang, S. Y. S., Wang, S.-H., Gillies, R. R., & Zhao, L. (2017). Greenhouse gases stabilizing winter atmosphere in the Indo-Gangetic plains may increase aerosol loading. Atmospheric Science Letters, 18(4), 168-174. https://doi.org/10.1002/asl.739
    Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M. C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J. G., Spracklen, D. V., Vignati, E., Wild, M., . . . Gilardoni, S. (2015). Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 15(14), 8217-8299. https://doi.org/10.5194/acp-15-8217-2015
    Grif, S. M., Huang, W. S., Lin, C. C., Chen, Y. C., Chang, K. E., Lin, T. H., Wang, S. H., & Lin, N. H. (2020). Long-range air pollution transport in East Asia during the first week of the COVID-19 lockdown in China [Article]. Science of the Total Environment, 741, 9, Article 140214. https://doi.org/10.1016/j.scitotenv.2020.140214
    Ha, K.-J., Heo, K.-Y., Lee, S.-S., Yun, K.-S., & Jhun, J.-G. (2012). Variability in the East Asian Monsoon: a review. Meteorological Applications, 19(2), 200-215. https://doi.org/10.1002/met.1320
    Hori, M. E., & Ueda, H. (2006). Impact of global warming on the East Asian winter monsoon as revealed by nine coupled atmosphere-ocean GCMs. Geophysical Research Letters, 33(3). https://doi.org/10.1029/2005gl024961
    Hsu, C. H., & Cheng, F. Y. (2019). Synoptic Weather Patterns and Associated Air Pollution in Taiwan [Article]. Aerosol and Air Quality Research, 19(5), 1139-1151. https://doi.org/10.4209/aaqr.2018.09.0348
    Hung, W. T., Lu, C. H., Wang, S. H., Chen, S. P., Tsai, F., & Chou, C. C. K. (2019). Investigation of long-range transported PM2.5 events over Northern Taiwan during 2005-2015 winter seasons [Article]. Atmospheric Environment, 217, 15, Article 116920. https://doi.org/10.1016/j.atmosenv.2019.116920
    Jeong, J. I., & Park, R. J. (2017). Winter monsoon variability and its impact on aerosol concentrations in East Asia. Environ Pollut, 221, 285-292. https://doi.org/10.1016/j.envpol.2016.11.075
    Lai, H.-C., & Lin, M.-C. (2020). Characteristics of the upstream flow patterns during PM2.5 pollution events over a complex island topography. Atmospheric Environment, 227. https://doi.org/10.1016/j.atmosenv.2020.117418
    Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., & Seinfeld, J. H. (2020). Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 369(6504), 702-706. https://doi.org/doi:10.1126/science.abb7431
    Lee, D., Wang, S. Y., Zhao, L., Kim, H. C., Kim, K., & Yoon, J.-H. (2020). Long-term increase in atmospheric stagnant conditions over northeast Asia and the role of greenhouse gases-driven warming. Atmospheric Environment, 241. https://doi.org/10.1016/j.atmosenv.2020.117772
    Li, Z., Lau, W. K. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, S. S., Cribb, M., . . . Brasseur, G. P. (2016). Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54(4), 866-929. https://doi.org/10.1002/2015rg000500
    Lin, C., Liu, S., Chou, C., Huang, S., Liu, C., Kuo, C., & Young, C. (2005). Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmospheric Environment, 39(33), 6066-6076. https://doi.org/10.1016/j.atmosenv.2005.06.046
    Misaki, T., Ohsawa, T., Konagaya, M., Shimada, S., Takeyama, Y., & Nakamura, S. (2019). Accuracy Comparison of Coastal Wind Speeds between WRF Simulations Using Different Input Datasets in Japan. Energies, 12(14). https://doi.org/10.3390/en12142754
    Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., … Powers, J. G. (2008). A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. doi:10.5065/D68S4MVH
    Wang, L., Zhang, N., Liu, Z., Sun, Y., Ji, D., & Wang, Y. (2014). The Influence of Climate Factors, Meteorological Conditions, and Boundary-Layer Structure on Severe Haze Pollution in the Beijing-Tianjin-Hebei Region during January 2013. Advances in Meteorology, 2014, 1-14. https://doi.org/10.1155/2014/685971
    Wang, S.-H., Hung, W.-T., Chang, S.-C., & Yen, M.-C. (2016). Transport characteristics of Chinese haze over Northern Taiwan in winter, 2005–2014. Atmospheric Environment, 126, 76-86. https://doi.org/10.1016/j.atmosenv.2015.11.043
    Wang, X., Zhong, S., Bian, X., & Yu, L. (2019). Impact of 2015–2016 El Niño and 2017–2018 La Niña on PM2.5 concentrations across China. Atmospheric Environment, 208, 61-73. https://doi.org/10.1016/j.atmosenv.2019.03.035
    Wang, S. S., Li, S. W., Xing, J., Yang, J., Dong, J. X., Qin, Y., & Sahu, S. K. (2022). Evaluation of the influence of El Nino-Southern Oscillation on air quality in southern China from long-term historical observations [Article]. Frontiers of Environmental Science & Engineering, 16(2), 14, Article 26. https://doi.org/10.1007/s11783-021-1460-0
    Wie, J., & Moon, B. K. (2017). ENSO-related PM10 variability on the Korean Peninsula. Atmospheric Environment, 167, 426-433. https://doi.org/10.1016/j.atmosenv.2017.08.052
    Wu, B., & Wang, J. (2002). Winter Arctic Oscillation, Siberian High and East Asian Winter Monsoon. Geophysical Research Letters, 29(19), 3-1-3-4. https://doi.org/10.1029/2002gl015373
    Xie, B., Yang, Y., Wang, P., & Liao, H. (2022). Impacts of ENSO on wintertime PM2.5 pollution over China during 2014–2021. Atmospheric and Oceanic Science Letters, 15(4), 100189.
    Xu, M., Xu, H., & Ma, J. (2016). Responses of the East Asian winter monsoon to global warming in CMIP5 models. International Journal of Climatology, 36(5), 2139-2155. https://doi.org/10.1002/joc.4480
    Zhao, S. Y., Zhang, H., & Xie, B. (2018). The effects of El Nino-Southern Oscillation on the winter haze pollution of China [Article]. Atmospheric Chemistry and Physics, 18(3), 1863-1877. https://doi.org/10.5194/acp-18-1863-2018
    Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., & Liao, H. (2019). Fine particulate matter (PM<sub>2.5</sub>) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 19(16), 11031-11041. https://doi.org/10.5194/acp-19-11031-2019
    Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., & Zhang, Q. (2018). Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18(19), 14095-14111. https://doi.org/10.5194/acp-18-14095-2018

    QR CODE
    :::