跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳育丞
Yu-Cheng Wu
論文名稱: Mn、 Ti/Cr 比與熱處理對 Ti-V-Cr 儲氫合金結構與特性之影響
Effect of Mn addition﹐Ti/Cr ratio and heat treatment on structural and hydrogen storage characteristics of Ti-V-Cr alloys
指導教授: 李勝隆
Sheng-Long Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 73
中文關鍵詞: Ti-V-Cr-Mn 合金熱處理儲氫合金BCC 相
外文關鍵詞: Annealing treatment, Ti-V-Cr-Mn alloys, BCC phase, Hydrogen storage alloys
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗將研究 Ti-V-Cr BCC 相儲氫合金的結構與吸放氫特性,藉由 Mn 元素的添加、改變 Ti/Cr 比與熱處理製程等方面探討,以期能了解各參數與吸放氫間關係。結果顯示鑄態 Ti33V33Cr34 合金有優良的活化速率,在第一次活化之初始 10 min 時,吸氫量即達最大吸氫量的 95 %。當 Mn 的添加不超過 15 at.% 時,有助於提昇鑄態 Ti33V33Cr(34-x)Mnx 合金放氫量,其 Ti33V33Cr19Mn15 合金最佳有效放氫量為 2.48 wt.%。降低鑄態 Ti(33-y)V33Cr(19+y)Mn15 合金中的 Ti/Cr 比可提高放氫平台壓,但也伴隨著最大吸氫量的減少。當 Ti31V33Cr21Mn15 合金在 1200 ℃ 下經 10 h 之熱處理,有效提高放氫平台壓並減少 PCI 平台斜率。


    Effect of Mn addition, Ti/Cr ratio and heat treatment on structural and hydrogen storage characteristics of Ti-V-Cr alloys were investigated. It was found that the hydrogen absorption rate of Ti33V33Cr34 alloy was considerably fast and more than 95 % of the hydrogen was absorbed within 10 min. The hydrogen desorption capacity was improved when the Mn contained less than 15 at.%. The best effective hydrogen storage capacity of Ti33V33Cr19Mn15 alloy was 2.48 wt.%. The plateau pressure increased with Ti/Cr ratio decreasing for the Ti(33-y)V33Cr(19+y)Mn15 alloys, however, the maximum hydrogen storage capacity decreased. The Ti31V33Cr21Mn15 alloy increased the plateau pressure and decreased the plateau slope after annealing at 1200 ℃ for 10 h.

    目錄......................................................I 圖目錄..................................................III 表目錄....................................................V 第一章 前言..............................................1 第二章 文獻回顧..........................................2 2.1 儲氫合金儲放氫基本原理...........................2 2.2 儲氫合金發展簡介.................................4 2.2.1 儲氫合金種類介紹..........................4 2.2.2 BCC 固溶體儲氫合金........................6 2.3 儲氫合金活化性能的改善..........................12 2.3.1 改變合金的表面性質.......................12 2.3.2 改變合金的基地性質.......................13 2.4 研究背景與目的..................................14 第三章 研究方法及進行步驟...............................15 3.1 實驗流程........................................15 3.2 儲氫合金之製備..................................16 3.3 微結構分析......................................18 3.3.1 X 光繞射分析.............................18 3.3.2 電子微探儀分析...........................18 3.3.3 微差掃描熱分析...........................18 3.4 熱處理..........................................19 3.5 儲氫合金之儲放氫基本特性測試....................19 3.5.1 活化速率測試.............................19 3.5.2 儲放氫測試...............................20 第四章 結果與討論.......................................22 4.1 Ti33V33Cr34 合金之結構與吸放氫性能.................22 4.2 Mn 添加對 Ti33V33Cr(34-x)Mnx 合金吸放氫性能之影響.....27 4.3 Ti/Cr 比對 Ti(33-y)V33Cr(19+y)Mn15 合金吸放氫性能之影響.35 4.4 熱處理對 Ti31V33Cr21Mn15 合金 PCI 平台斜率之影響....39 第五章 結論.............................................42 第六章 未來研究方向.....................................43 參考文獻.................................................44 附錄.....................................................48

    1. 曹芳海, 趙令裕, 周桂蘭, “經濟部能源局能源報導”,
    pp.5-7 (2006 年10 月).
    2. 胡子龍, “儲氫材料”, 化學工業出版社, pp.20-21,49
    (2002).
    3. E. David, “An overview of advanced materials for
    hydrogen storage”, J . Mater. Process. Tech.,
    Vol.162-163, pp.169-177 (2005).
    4. V.K. Sinha, W.E. Wallace, “The hyperstoichiometric
    ZrMn1+xFe1+y–H2 system II : hysteresis effect”, J.
    Less-Common Met., Vol.91, pp.239-249 (1983).
    5. G. Sandrock , “A panoramic overview of hydrogen
    storage alloys from a gas reaction point of view”,
    J. Alloys Comp., Vol.293-295, pp.877-888 (1999).
    6. J.H.N. Vucht, F.A. Kuijpers, H.C.A.M. Bruning,
    “Reversible room–temperature absorption of large
    quantities of hydrogen by intermetallic compounds”,
    Philips Res. Rep., Vol.25, pp.133-140 (1970).
    7. J.J. Reilly, R.H. Wiswall, “The reaction of hydrogen
    with alloys of magnesium and nickel and the formation
    of Mg2NiH4”, Inorg. Chem., Vol.7, pp.2254-2256
    (1968).
    8. J.J. Reilly, R.H. Wiswall, “Formation and properties
    of iron titanium hydride”, Inorg. Chem., Vol.13,
    pp.218-222 (1974).
    9. L. Schlapbach, A. Züttel, “Hydrogen–storage
    materials for mobile applications”, Nature ,
    Vol.414, pp.353-358 (2001).
    10. E. Akiba, H. Iba, “Hydrogen absorption by Laves
    phase related BCC solid solution”, Intermetallics,
    Vol.6, pp.461-470 (1998).
    11. J.J. Reilly, R.H. Wiswall, “Higher hydrides of
    vanadium and niobium”, Inorg. Chem., Vol.9, pp.1678-
    1682 (1970).
    12. H. Yukawa, M. Takagi, A. Teshima, M. Morinaga,
    “Alloying effects on the stability of vanadium
    hydrides”, J. Alloys Comp., Vol.332, pp.105-109
    (2002).
    13. S. Ono, K. Noura, Y. Ikeda, “The reaction of
    hydrogen with alloys of vanadium and titanium”, J.
    Less–Common Met., Vol.72, pp.159-165 (1980).
    14. X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, “Enhancement of
    hydrogen storage capacity of Ti–V–Cr–Mn BCC phase
    alloys”, J. Alloys Comp., Vol.372, pp.272-277 (2004).
    15. Y. Yan, Y. Chen, H. Liang, C. Wu, M. Tao, “Hydrogen
    storage properties of V30–Ti–Cr–Fe alloys”, J.
    Alloys Comp., Vol.427, pp.110-114 (2007).
    16. M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, A.
    Kamegawa, “Ti–V–Cr b.c.c. alloys with high protium
    content”, J. Alloys Comp., Vol.330-332, pp.511-516
    (2002).
    17. D.S. dos Santosa, M. Bououdinab, D. Fruchartc,
    “Structural and thermodynamic properties of the
    pseudo-binary TiCr2-xVx compounds with 0.0 x 1.2”,
    J. Alloys Comp., Vol.340, pp.101-107 (2002).
    18. S.W. Cho, C.S. Han, C.N. Park, E. Akiba, “The
    hydrogen storage characteristics of Ti–Cr–V
    alloys”, J. Alloys Comp., Vol.288, pp.294-298 (1999).
    19. Y. Yan, Y. Chen, H. Liang, C. Wu, M. Tao, T.
    Mingjing, “Effect of Al on hydrogen storage
    properties of V30Ti35Cr25Fe10 alloy”, J. Alloys
    Comp., Vol.426, pp.253-255 (2006).
    20. X.B. Yu, J.Z. Chen, Z.Wu, B.J. Xia, N.X. Xu, “Effect
    of Cr content on hydrogen storage properties for Ti–
    V–based BCC-phase alloys”, Int. J. Hydrogen Energy,
    Vol.29 , pp.1377-1381 (2004).
    21. R. Guo, L.X. Chen, Y.Q. Lei, S.Q. Li, Y.W. Zeng, Q.D.
    Wang, “Phase structures and electrochemical
    behaviors of V2.1TiNi0.5Hf0.05Crx (x= 0–0.152)
    hydrogen storage alloys”, J. Alloys Comp., Vol.358,
    pp.223-227 (2003).
    22. C.Y. Seo, J.H. Kim, P.S. Lee, J.Y. Lee, “Hydrogen
    storage properties of vanadium-based b.c.c. solid
    solution metal hydrides”, J. Alloys Comp.,
    Vol.348, pp.252-257 (2003).
    23. S.W. Cho, C.S. Han, C.N. Park, E. Akiba, “Hydrogen
    storage characteristics of Ti–Zr–Cr–V alloys”, J.
    Alloys Comp., Vol.289, pp.244-250 (1999).
    24. T. Tamura, Y. Tominaga, K. Matsumoto, T. Fuda, T.
    Kuriiwa, A. Kamegawa, H. Takamura, M. Okada,
    “Protium absorption properties of Ti–V–Cr–Mn
    alloys with a b.c.c. structure”, J. Alloys Comp.,
    Vol.330-332, pp.522-525 (2002).
    25. M. Martin, C. Gommel, C. Borkhart, E. Fromm,
    “Absorption and desorption kinetics of hydrogen
    storage alloys”, J. Alloys Comp., Vol.238, pp.193-
    201 (1996).
    26. X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, “Improvement of
    activation performance of the quenched Ti–V–based
    BCC phase alloys”, J. Alloys Comp., Vol.386, pp.258-
    260 (2005).
    27. D.Y. Yan, Y.M. Sun, S. Suda, “Surface properties of
    the F–treated ZrTiVNi alloy”, J. Alloys Comp.,
    Vol.231, pp.387-391 (1995).
    28. M. Matsuoka, E. Nakayama, F. Uematsu, Y. Yamamoto, C.
    Iwakura, “Activation mechanism of
    Ti0.5Zr0.5Ni1.3V0.7Mn0.1Cr0.1 electrode in nickel–
    hydride batteries”, Electrochim. Acta, Vol.46,
    pp.2693-2697 (1995).
    29. T. Mouri, H. Iba, “Hydrogen–absorbing alloys with a
    large capacity for a new energy carrier”, Mater.
    Sci. Eng. A, Vol.329-331, pp.346-350 (2002).
    30. T. Kabutomori, H. Takeda, Y. Wakisaka, K. Ohnishi,
    “Hydrogen absorption properties of Ti-Cr-A (A= V, Mo
    or other transition metal) B.C.C. solid solution
    alloys”, J. Alloys Comp., Vol.231, pp.528-532 (1995).
    31. 謝成木, “鈦及鈦合金鑄造”, 機械工業出版社, pp.231-
    262 (2004 年 10 月).
    32. Y. Tominaga, S. Nishimura, T. Amemiya, T. Fuda, T.
    Tamura, T. Kuriiwa, A. Kamegawa, M. Okada, “Protium
    absorption–desorption properties of Ti-V-Cr alloys
    with a BCC structure”, Mater. Trans., JIM, Vol.40,
    pp.871-874 (1999).
    33. Y. Tominaga, K. Matsumoto, T. Fuda, T. Tamura, T.
    Kuriiwa, A. Kamegawa, H. Takamura, M. Okada,
    “Protium absorption–desorption properties of Ti-V-Cr-
    (Mn, Ni) alloys”, Mater. Trans., JIM, Vol.41, pp.617-
    620 (2000).
    34. T. Tamura, M. Hatakeyama, T. Ebinuma, A. Kamegawa, H.
    Takamura, M. Okada, “Protium absorption
    properties of Ti–V–Cr–Mn alloys in the low
    pressure regions”, Mater. Trans., Vol.43, pp.1120-
    1123 (2002).

    QR CODE
    :::