跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾韋傑
Wei-Chieh Tseng
論文名稱: 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
指導教授: 李佩雯
Pei-Wen Li
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 83
中文關鍵詞: 鍺量子點浮點電容
外文關鍵詞: quantum dot
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文中利用中央大學微光電實驗室的化學氣相沉積系統,主要藉由調變SiH4 與GeH4氣體流量比、反應環境溫度,得以調控複晶矽鍺薄膜中的鍺含量,並利用材料分析方面的儀器,找出最佳的複晶矽鍺製程條件。建立屬於我們實驗室機台的資料,日後如需要特定的鍺莫耳含量,僅需做反應溫度的微調。我們不但完成最佳化製程條件,並且成功的利用潛伏期這個擾人的因素,控制GeH4氣體通入腔體的流量隨著沉積時間增加而增加,如此漸增式的製程,能直接在穿檖氧化層上沉積複晶矽鍺量子點,其大小約25nm密度約1010cm-2,可直接運用在未來浮點電晶體的研究。
    另外,經由實際製作金氧半浮點電容,分裂為三個不同的氧化時間,試圖找出元件最佳的氧化條件,觀察其C-V量測圖形,我們觀察到很明顯的順時針磁滯現象。雖然並不是如我們所預期的,觀察到量子點儲存電子造成逆時針磁滯。現在實驗室己經完成N2O的擴充,接下來將利用N2O良好的修補缺陷特性,改善因為缺陷造成的磁滯現象。


    目錄 圖目錄…………………………………………………………………...……..Ⅰ 表目錄…………………………………………………………………...……..Ⅳ 序章 論文結構介紹……………………………………………...…………..Ⅴ 第一章 序論……………………………………………………………...……..1 1-1前言…………………………………………………………………….1 1-2 研究動機……………………………………………………...……….3 1-3 研究目的與應用………………………………………...…………….4 第二章 快閃記憶體元件操作動作原理…..…….………………...……...…..9 2-1 前言……………………………………………………………...….....9 2-2 快閃記憶體元件結構…...………………………..…………...………9 2-3 奈米材料中的量子侷限效應…………...…………………...…..…..11 2-4 快閃記憶體寫入與擦拭方法……….………………………...……..11 2-4-1 通道熱電子寫入……………………………………....………...11 2-4-2 F-N寫入………………………………………..……....………..12 2-4-3 F-N擦拭………………………………………..……....………..13 2-5電荷保持……….………………………………………………....………..13 2-6浮點電晶體的優劣….…………………………………………....………..15 第三章 複晶矽鍺沈積……………………………………………....………...22 3-1 前言………………………………………………………...………...22 3-2 成長系統…………………………..………………………..………..22 3-3複晶矽鍺沈積原理………...………………………...………...……..22 3-4實驗方法與步驟………………………….……………..…...….…....24 3-4-1 實驗方法……………………………………………..…………24 3-4-2實驗流程…………………….………………………......….……25 3-5複晶矽鍺薄膜沈積…………………………….…………….....…….25 3-5-1 GeH4氣體流量………………...…….………………..…………25 3-5-2 沈積環境溫度…………………...…………………......….……26 3-5-3複晶矽鍺薄膜最佳化.…………...…………………......….……26 3-6 複晶矽鍺薄膜之潛伏期………...………………………......….……27 3-6-1表面處理……..………………...…….………………..…………27 3-6-2 鍺莫耳含量……………………...…………………......….……28 3-6-3 起始層厚度..……………………...…………..……......….……29 3-7 複晶矽鍺薄膜之水溶性……………...……………..……....….……29 3-8複晶矽鍺量子點沈積………………………………..……....….……30 3-9複晶矽鍺沉積各因素間的影響……………………………..….……31 3-10複晶矽鍺薄膜材料分析……………………………….……...….…32 3-10-1 X光光電子能譜化學鍵結分析..………………..……………..32 3-10-2利用RBS進行材料分析………...………………….....….……33 3-11 結論..……………………...…………..……......….………………..34 第四章 金氧半浮點電容製作與電性分析……………..…………...………..54 4-1 前言…………………………………………………………...……...54 4-2 實驗設計與步驟……………………………………………………..54 4-3 矽/鍺選擇性氧化……….………………………..……………...…...55 4-3-1 矽/鍺選擇性氧化原理………...…………………..……………56 4-3-2 選擇性氧化率實驗….………...…………………......….……...56 4-3-3 TEM分析….………...…………………......….……...................57 4-4 MOSC原理介紹………..…………………………………….............57 4-4-1 能帶圖………...…………………..…………………………….57 4-4-2 界面陷阱與氧化層電荷………...…………………......….……58 4-5 MOSC元件製程…………………………………………….……......59 4-6 MOSC量測分析……………………………………….......................60 4-6-1 I-V曲線………...…………………..…………………………60 4-6-2 C-V曲線………...…………………......….……………………..61 第五章 總結與未來展望……………………………………………...……....80 參考文獻資料………………………………………………………….....……81

    參考文獻資料
    [1] William D.Brown ,Joe E.Brewer,”Nonvolatile Semiconductor Memory
    Technology”,The institute of Electrical and Electronics Engineers Inc,1997.
    [2] Stefan Lai, ”Tunnel Oxide and ETOX Flash scaling Limitation”, Intel
    Non Volatile Memory Technology conference, 1998.
    [3] J. J. Welser et al., “Room temperature operation of a quantum-dot flash memory,”IEEE Electron Device Letters, EDL-18, p.278, 1997
    [4] B. H. Choi et al., “Fabrication and room-temperature characterization of a silicon self-assembled quantum dot transistor,” Appl. Phys. Lett., 73, p.3129, 1998
    [5] T. Baron et al., “Chemical vapor deposition of Ge nanocrystls on SiO2,” Appl. Phys.Lett., 83, p.1444, 2003
    [6] H. Ishikuro et al., “Quantum mechanical effects in the silicon quantum dot in a single-electron transistor,” Appl. Phys. Lett, 71, p.3691, 1997
    [7] S. Tiwari, et al., “Volatile and nonvolatile memories in silicon with nanocrystal storage,” IEEE IEDM Technical Digest, p.521, 1995
    [8] S. Tiwari, et al., “Single electron charging of Sn nanocrystals in Thin SiO2 film formed by low energy ion implantation,” IEEE IEDM Technical Digest, p.159, 1997
    [9] C. Y. King et al., “MOS memory using germanium nanocrystals formed by thermal oxidation of SiGe,” IEEE IEDM Technical Digest, p.115, 1998
    [10] W. K. Choi et al., “Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal-insulator-semiconductor structure,” Appl. Phys. Lett., 80, p.2014, 2002
    [11] R. Ohba, et al., “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots,” IEEE Trans. Electron Devices, 49, 1392, 2002
    [12] Y. Shi, et al., “Effects of interface traps on charge retention characteristics in silicon-quantum-dot-based metal-oxide-semiconductor diodes,” Jpn. J. Appl. Phys., 38, 425, 1999]
    [13] Mori, N. Arai, Y. Kaneko and K. Yoshikawa, “Polyoxide Thinning
    Limitation and Superior ONO Interpoly Dielectric for Nonvolatile Memory
    Device” ,IEEE Transactions on Electron Device , Vol. 38,NO.2,FEB, 19
    [14] Mori, E. Sakagami, H. Araki, Y. Kaneko, K. Narita, Y.Ohshima, N. Arai
    and K. Yoshikawa, ”ONO Inter-poly Dielectric Scaling for Nonvolatile
    Memory Applications”, IEEE Transactions on Electron
    Device ,Vol.38,NO.2,FEB, 1991.
    [15] S. Tam, P. K. Ko, and C. Hu, “Lucky-Electron Model of Channel
    Hot-Electron Injection in MOSFET’s,” IEEE Transaction on
    Electron Devices, Vol.31, September 1984, p.1116.
    [16] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim Tunneling into
    Thermally Grown SiO2,” Journal of Applied Physics, January 1969, p.278.
    [17] Pan, K. Wu, P. Freiberger, A.Chatterjee, G. Sery,” A Scaling Methodology for Oxide-Nitride-Oxide Interpoly Dielectric for EPROMApplication”, IEEE Trans. on Electron Dev. Vol.37, No.6, P.1439, Jun. 1990.
    [18] Pan, K. Wu , D. Chin, G. Sery, J. Kiely,” High-Temperature Charge Loss
    Mechanism in Floating-Gate EPROM with an Oxide-Nitride-Oxide(ONO)
    Interpoly Stacked Dielectric”,IEEE Electron Dev.Lett.,
    Vol.12,No.9,P.506,Sep.1991.
    [19] T. Hiramoto, H. Ishikuro and T. Fujii, “Fabrication of Si nanostructures for
    Single-Electron device Applications by Anisotropic etching”, Jpn. J. Appl. Phys., vol.35, p6664, 1996
    [20] Tsu-Jae King and Krishna C. Saraswat, “Deposition and Properties of Low-Pressure Chemical-Vapor Deposited Polycrystalline Silicon-Germanium Film”,Department of Electrical Engineering, Stanford University Stanford, California 94305

    QR CODE
    :::