跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳淑萍
Shu-Ping Wu
論文名稱: 兩個獨立的基本Lévy隨機過程之極值過程
On Maximum and Minimum of Two Independent Simple Lévy Processes
指導教授: 許玉生
Yu-Sheng Hsu
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 93
語文別: 英文
論文頁數: 204
中文關鍵詞: 極值過程Lévy隨機過程
外文關鍵詞: Lévy Processes, Maximum and Minimum
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這本論文中,我們研究兩個獨立的基本Lévy隨機過程之極值過程。我們考慮的Lévy過程有布朗運動、卜松過程,以及此兩種隨機過程的和。
    在第二章,我們對兩個獨立的布朗運動,找出其極值過程的期望值、平方期望值,進一步討論其機率性質:獨立增量、平穩增量、到達時間的分布和隨機積分等。統計分析則有似然比值、最大似然估計及漸近的不偏估計。
    第三章探討的是兩個獨立的卜松過程,我們找出其極值過程的期望值、平方期望值、邊際分布及條件分布。機率性質的討論包含獨立增量、平穩增量、跳躍時間的分布和間隔時間的分布。統計分析則是同第二章,有似然比值、最大似然估計及近似的不偏估計。
    第四章則是將布朗運動與卜松過程結合,我們對兩者之和所形成新的兩獨立過程,寫出其極值過程的期望值、平方期望值的表示式,討論其獨立增量、平穩增量、到達時間的分布等機率性質,統計分析同前兩章。
    第五章,我們將對第二章到第四章的結論作整理與解析。


    In this dissertation, we study the maximum and minimum of two independent
    simple L$acute{mbox e}$vy processes. L$acute{mbox e}$vy processes considered are
    Brownian motion with drift, Poisson process and their sum.
    Mathematical or probabilistic properties discussed include stationary, martingale, diffusion,
    stochastic integral, interarrival time, jumping time, first passage time, etc.
    Statistical properties investigated cover likelihood ratio, maximum likelihood estimator and
    asymptotically unbiased estimator.
    This dissertation is structured as follows. In Chapter 2, we deal with the maximum and minimum of two independent
    Brownian motions with drifts. Chapter 3 contains the works about the maximum and minimum of two independent
    Poisson processes. Chapter 4 is covered by the results about the maximum and minimum of two independent
    sums of Brownian motion with drift and Poisson process. In Chapter 5, we provide conclusions and comparisons.

    List of Notations III List of Figures VII List of Tables VIII Chapter 1 Introduction 1 Chapter 2 Maximum and Minimum of Two Independent Brownian Motions with Drifts 4 2.1 Moments and Probabilistic Properties 7 2.2 First Passage Times 20 2.3 Stochastic Analysis 26 2.4 Likelihood Ratio and Maximum Likelihood Estimator 31 Chapter 3 Maximum and Minimum of Two Independent Poisson Processes 42 3.1 Marginal and Conditional Distributions 45 3.2 First Passage Times 55 3.3 Interarrival Times and Conditional Jumping Times 65 3.4 Likelihood Ratio and Maximum Likelihood Estimator 114 Chapter 4 Maximum and Minimum of Two Independent Sums of Brownian Motion with Drift and Poisson Process 130 4.1 Moments and Probabilistic Properties 133 4.2 First Passage Times 144 4.3 Likelihood Ratio and Maximum Likelihood Estimator 148 Chapter 5 Conclusions 166 5.1 Similarities and Differences 167 5.2 Expectations 170 5.3 Second Moments 174 5.4 Interarrival times and Conditional Jumpings 176 5.5 Likelihood Ratio 179 References 181

    [1] Aase, K. K. (1986a). New option pricing formulas when the stock market is a
    combined continuous point process. Technical Report. No. 60. CCREMS, MIT,
    Cambridge, MA.
    [2] Aase, K. K. (1986b). Probabilistic solutions of option pricing and corporate
    security valuation. Technical Report. No. 63. CCREMS, MIT, Cambridge, MA.
    [3] Alili, L. and Chaumont L. (2001). A new fluctuation identity for L´evy processes
    and some applications. Bernoulli. 7, 557-569.
    [4] Alos, E. Mazet, O. and Nualart, D. (2000). Stochastic calculus with respect
    to fractional Brownian motion with Hurst parameter less than 1/2. Stochastic
    Process. Appl. 86, 121-139.
    [5] Andersen, P. K. Borgan, O. Gill, R. D. and Keiding, N. (1993). Statistical
    Methods on Counting Processes. Springer-Velag.
    [6] Aven, T. and Jensen, U. (1999). Stochastic Models in Reliability. Springer.
    [7] Bachelier, L. (1990). Theorie de la speculation. Ann Sci. Ecole Norm. Sup. 17,
    20-86.
    [8] Barndorff-Nielsen, O. E. (1988). Parametric Statistical Models and Likelihood.
    Lecture Notes in Statistics 50, Springer-Verlag.
    [9] Barndorff-Nielsen, O. E. and Sørensen, M. (1994). A review of some aspects of
    asymptotic likelihood theory for stochastic processes. International Statistical
    Review. 50, 145-159.
    [10] Basawa, I. V. and Prabhu, N. U. (1994). Statistical inference in stochastic
    processes. Journal of Statistical Planning and Inference. 39.
    [11] Basawa, I. V. and Prakasa Rao, B. L. S. (1980). Statistical Inference for Stochastic
    Processes. Academic Press, London.
    [12] Beran, J. (1994). Statistical Methods for Long Memory Processes. Chapman and
    Hall, London.
    [13] Berger, J. O. and Wolpert, R. L. (1988). The Likelihood Principle. Lecture
    Notes-Monograph Series, Volume 6, Institute of Mathematical Statistics.
    [14] Bertoin, J. (1996). L´evy Processes. Laboratoire de Probabilit´es Universit´e Pierre
    et Marie Curie.
    [15] Billingsley, P. (1961). Statistical Inference for Markov Processes. University of
    Chicago Press, Chicago.
    [16] Bingham, N. H. (1975). Fluctuation theory in continuous time. Adv. Appl.
    Probab. 7, 705-766.
    [17] Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities.
    Journal of Political Economy. 81, 637-659.
    [18] Bodo, B. A., Thompson, M. E., and Unny, T. E. (1987). A review on stochastic
    differential equations for applications in hydrology. Stochastic Hydrol. Hydraul.
    1, 81-100.
    [19] Bosq, D. (1998). Nonparametric Statistics for Stochastic Process. 2nd. ed., Lecture
    Notes in Statistics 110, Springer.
    [20] Brown, B. M. and Hewitt, J. T. (1975). Asymptotic likelihood theory for diffusion
    processes. Journal of Applied Probability. 12, 228-238.
    [21] Brown, R. (1827). A Brief Account of Microscopical Observations. London.
    [22] Chaumont, L. (1996). Conditionings and path decompositions for L´evy processes.
    Stochastic Process Appl. 64, 39-54.
    [23] Cheridito, A. (2001). Mixed fractional Brownian motion. Bernoulli. 7, 913-934.
    [24] Chow, Y. S. and Teicher, H. (1997). Probability Theory. 3rd. ed., Springer.
    [25] Ciesielski, Z. (1961). Holder condition for realizations of Gaussian processes.
    Trans. Amer. Math. Soc. 99, 403-413.
    [26] Cinlar, E. (1975). Introduction to Stochastic Processes. Prentice Hall.
    [27] Coutin, L. and Qian, Z. (2000). Stochastic differential equations for fractional
    Brownian motions. C. R. Acad. Sci. Paris S´e. I Math. 331, 75-80.
    [28] Cox, D. R. (1975). Partial likelihood. Biometrika. 62, 269-276.
    [29] Cox, D. R. and Lewis, P. A. W. (1978). The Statistical Analysis of Series of
    Events. Chapman and Hall.
    [30] Dai, W. and Heyde, C. (1996). Itˆo’s formula with respect to fractional Brownian
    motion and its application. J. Appl. Math. Stochastic Anal. 9, 439-448.
    [31] Decreusefond, L. and ¨Ustunel, A. (1997) Stochastic analysis of the fractional
    Brownian motion. Potential Anal. 10, 177-214.
    [32] Dietz, H. M. (1989). Asymptotic Properties of Maximum Likelihood Estimators
    in Diffusion Type Models, Part 1: General Statements. Preprint No. 228,
    Humboldt-Universit¨at, Berlin.
    [33] Doob, J. L. (1953). Stochastic Processes. New York Wiley.
    [34] Durrett, R. (1999). Essentials of Stochastic Processes. Springer.
    [35] Eberlein, E. (2001). Application of Generalized Hyperbolic L´evy Motions to
    Finance. In L´evy Process: Theory and Applications. Birkh¨auser: Basel.
    [36] Eberlein, E. and Raible, S. (1999). Term structure models driven by general
    L´evy process. Math. Finance. 9, 31-53.
    [37] Edwards, A. F. (1972). Likelihood. Cambridge, U.K.: Cambridge University
    Press.
    [38] Einstein, A. (1905). On the movement of small particles suspend in a stationary
    liquid demanded by the molecular-kinetic theory of heat. Ann. Physik. 17.
    [39] Evans, M., Fraser, D. A., and Monette, G. (1986). On principles and arguments
    to Likelihood. Canadian Journal of Statistics. 14, 181-199.
    [40] Feigin, P. (1976). Maximum likelihood estimation for stochastic processes−A
    martingale approach. Advances in Applied Probability. 8, 712-736.
    [41] Fleischmann, K. and Mueller, C. (1997). A super-Brownian motion with a locally
    infinite catalytic mass. Probab. Theory Related Fields. 107, 325-357.
    [42] Fleischmann, K. and Klenke, A. (1999). Smooth density field of catalytic super-
    Brownian motion. Ann. Appl. Probab. 19, 198-318.
    [43] Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival
    Analysis. Wiley.
    [44] Fristedt, E. (1974). Sample Functions of Stochastic Processes with Stationary,
    Independent Increments. Advances in Probability. 3, 241-396. Dekker, New
    York.
    [45] Geyer, C. (1999). Likelihood inference for spatial point processes. in Stochastic
    Geometry: Likelihood and Computation, eds. O. E. Barndorff-Nielsen, W. S.Kendall, and M. N. M. van Lieshout, London: Chapman and Hall/CRC, 79-
    140.
    [46] Gihman, I. I. and Skorohod, A. V. (1975). The Theory of Stochastic Processes
    II. Springer, Berlin.
    [47] Godambe, V. P. and Heyde, C. C. (1987). Quasi-likelihood and optimal estimation.
    International Statistical Review. 55, 231-244.
    [48] Grandell, J. (1997). Mixed Poisson Processes. Chapman and Hall.
    [49] Grenander, U. (1981). Abstract Inference. Wiley.
    [50] Guttorp, P. (1991). Statistical Inference for Branching Processes. Wiley.
    [51] He, S. W., Wang, J. G., and Yan, J.A. (1992). Semimartingale Theory and
    Stochastic Calculus. Science Press.
    [52] Heyde, C. C. (1997). Quasi-Likelihood and its Application. Springer.
    [53] Hogg and Craig (1995). Introduction to Mathematical Statistics. 5th ed. Prentice
    Hall.
    [54] Hutton, J. E. and Nelson, P. I. (1986). Quasi-likelihood estimation for semimartingales.
    Stochastic Processes and their Applications. 22, 245-257.
    [55] Itˆo, K. (1961). Lectures on Stochastic Processes. Tata Institute of Fundamental
    Research. Springer, Berlin.
    [56] Jacod, J and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes.
    Springer, Berlin.
    [57] Jeanblanc, M., Pitman, J., and Yor, M. (2002). Self-similar processes with
    independent increments associated with L´evy and Bessel processes. Stochastic
    Processes and their Applications. 100, 223-231.
    [58] Kao, E. P. C. (1997). An Introduction to Stochastic Processes. Duxbury Press.
    [59] Karlin, S. (1967). A First Course in Stochastic Processes. Academic Press, New
    York.
    [60] Karlin, S. and Taylor, H. (1980). A Second Sourse in Stochastic Processes.
    Academic Press, New York.
    [61] Karr, A. F. (1991). Point Processes and their Statistical Inference. Marcel
    Dekker, New York.
    [62] Kingman, J. F. C. (1993). Poisson Processes. Oxford University Press.
    [63] K¨uchler, U. (2004). On integrals with respect to L´evy processes. Statistics &
    Probability Letters. 66, 145-151.
    [64] K¨uchler, U. and Sørensen, M. (1997). Exponential Families of Stochastic Processes.
    Springer.
    [65] Kutoyants, Yu. A. (1984). Parameter Estimation for Stochastic Processes.
    Translated and edited by Prakasa Rao, B. L. S. Heldermann, Verlag Berlin.
    [66] Kutoyants, Yu. A. (2004). Statistical Inference for Ergodic Diffusion Processes.
    Springer.
    [67] LeBlanc, B. and Yor, M. (1998). L´evy Processes in finance: A remedy to the
    non-stationarity of continuous martingales. Finance and Stochastics. 2, 399-408.
    [68] Le´on, J. A., Sol´e, J. L., Utzet, F., and Vives, J. (2002). On L´evy processes,
    Malliavin calculus and market models with jumps. Finance Stochast. 6, 197-
    225.
    [69] Leskow, J. and Rozanski, R. (1989). Maximum likelihood estimation of the drift
    function for a diffusion process. Statistics and Decisions. 7, 243-262.
    [70] L´evy, P. (1939). Sur certains processus stochastiques homogenes. Compositio
    Math. 7, 283-339.
    [71] L´evy, P. (1948). Processus Stochastiques et Mouvement Brownien. Gauthier-
    Villars, Paris.
    [72] L´evy, P. (1954). Th´eorie de L’addition des Variables Al´eatoires. 2nd edn.
    Gauthier-Villars, Paris.
    [73] Lin, S. (1995). Stochastic analysis of fractional Brownian motions. Stochastics
    Stochastics Rep. 55, 121-140.
    [74] Mandelbrot, B. B. and Van Ness, J. W. (1968). Fractional Brownian motions,
    fractional noises and applications. SIAM Rev. 10, 422-437.
    [75] Mazo, R. M. (2002). Brownian Motion. Clarendon Press. Oxford.
    [76] McCullagh, P. (1983). Quasi-Likelihood Functions. Annals of Statistics. 11, 59-
    67.
    [77] Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics
    and Management Science. 4, 141-183.
    [78] Mikosch, T., Resnick, S., Rootzen, H. and Stegeman, A. (2002). Is network
    traffic approximated by stable L´evy motion or fractional Brownian motion?.
    The Annals of Applied Probability. 12, 23-68.
    [79] Mishra, M. N. and Bishwal, J. P. N. (1995). Approximate maximum likelihood
    estimation for diffusion processes from discrete observations. Stochastics and
    Stochastics Reports. 52, 1-13.
    [80] Mishra, M. N. and Prakasa Rao, B. L. S. (1985a). Asymptotic study of the
    maximum likelihood estimator for nonhomogeneous diffusion processes. Statistics
    and Decisions. 3, 193-203.
    [81] Mishra, M. N. and Prakasa Rao, B. L. S. (1985b). On the Berry-Esseen bound
    for maximum likelihood estimator for linear homogeneous diffusion processes.
    Sankhy¯a A. 47, 392-398.
    [82] Morales, M. and Schoutens, W. (2003). A risk model driven by L´evy processes.
    Appl. Stochastic Models Bus. Ind. 19, 147-167.
    [83] Mtundu, N. D. and Koch, R. W. (1987). A stochastic differential equation
    approach to soil moisture. Stochastic Hydrol. Hydraul. 1, 101-116.
    [84] Muisela, M. and Rutkowski, R. (1998). Martingale Methods in Financial Modeling.
    Springer.
    [85] Nualart, D. and Schoutens, W. (2000). Chaotic and predictable representation
    for L´evy processes. Stochastic Process Appl. 90, 109-122.
    [86] Owen, A. B. (2001). Empirical Likelihood. Chapman and Hall.
    [87] Parzen, E. (1962). Stochastic Processes. Holden-Day.
    [88] Pedersen, A. R. (1995). Consistency and asymptotic normality of an approximate
    maximum likelihood estimator for discretely observed diffusion processes.
    Bernoulli. 1, 257-279.
    [89] Philippe, C., Laure, C. and G´erard M. (2003). Stochastic integration with respect
    to fractional Brownian motion. Ann. I. H. Poincar´e-PR39. 1, 27-68.
    [90] Pipiras, V. and Taqqu, M. S. (2000). Integration questions related to fractional
    Brownian motion. Probab. Theory Related Fields. 251-291.
    [91] Prabhu, N. U., ed. (1988). Statistical Inference from Stochastic Processes. (Contemporary
    Mathematics, Vol. 80). American Mathematical Society, Providence,
    RI.
    [92] Prabhu, N. U. and Basawa, I. V. (1991). Statistical Inference in Stochastic
    Processes. Marcel Dekker, New York.
    [93] Prakasa Rao, B. L. S. (1972). Maximum likelihood estimation for Markov processes.
    Annals of the Institute of Statistical Mathematics. 24, 333-345.
    [94] Prakasa Rao, B. L. S. (1999a). Statistical Inference for Diffusion Type Process.
    Arnold.
    [95] Prakasa Rao, B. L. S. (1999b). Semimartingales and their Statistical Inference.
    Chapman and Hall.
    [96] Prakasa Rao, B. L. S. and Bhat, B. R. (1996). Stochastic Processes and Statistical
    Inference. New Age International, New Delhi.
    [97] Protter, P. (1990). Stochastic Integration and Differential Equations. Springer.
    [98] Reid, N. (2000). Likelihood. Journal of the American Statistical Association.
    95, 1335-1340.
    [99] Ren, Y. (2001). Construction of super-Brownian motions. Stochastic Analysis
    and Applications. 19, 103-114.
    [100] Revuz, D. and You, M. (1994). Continuous Martingales and Brownian Motion.
    Springer.
    [101] Robins, J. and Wasserman, L. (2000). Conditioning, Likelihood, and Coherence:
    A Review of Some Foundational Concepts. 95, 1340-1346.
    [102] Rogers, L. C. G. (1997). Arbitrage with fractional Brownian motion. Math.
    Finance. 7, 95-105.
    [103] Rogers, L. C. G. and Williams, D. (1994). Diffusions Markov Processes, and
    Martingales vol. I: Foundations. [1st ed. by Williams, D., 1979.] Wiley.
    [104] Ross, S. M. (1997). Introduction to Probability Models. 6th. ed., Academic Press.
    [105] Sato, K. (1990). Stochastic Processes with Stationary Independent Increments.
    Kinokuniya, Tokyo.
    [106] Sato, K. (1995). L´evy Processes on the Euclidean Spaces. University of Zurich.
    [107] Sato, K. (1999). L´evy Processes and Infinitely Divisible Distributions. Cambridge
    University Press.
    [108] Schoutens, W. (2003). L´evy Processes in Finance: Pricing Financial Derivatives.
    Wiley.
    [109] Severini, T. A. (2000). Likelihood Methods in Statistics. Oxford Univ. Press.
    [110] Shorack, G. and Wellner, J. A. (1986). Empirical Processes with Applications
    to Statistics. Wiley, New York.
    [111] Skorohod, A. V. (1991). Random Processes with Independent Increments.
    Kluwer, Dordrecht, Netherlands.
    [112] Sørensen, M. (1983). On maximum likelihood estimation in randomly stopped
    diffusion-type processes. International Statistical Review. 51, 95-110.
    [113] Stark, H. and Woods, J. W. (2002). Probability and Random Processes with
    Applications to Signal Processing. 3rd. ed., Prentice Hall.
    [114] Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Inference
    for Time Series. Springer.
    [115] Taylor, S. J. (1973). Sample path properties of processes with stationary independent
    increments. Stochastic Analysis, 387-414. Wiley, London.
    [116] Tsou, T. S. and Royall, R. M. (1995). Robust likelihood. JASA. 90, 316-320.
    [117] Wang, Y. (2002). An alternative approach to super-Brownian motion with a
    locally infinite branching mass. Stochastic Processes and Applications. 102, 221-
    233.
    [118] Welsh, A. H. (1996). Aspects of Statistical Inference. Wiley.
    [119] Wiener, N. (1924). Un probl`eme de probabilit´es d´enombrables. Bull Soc. Math.
    France. 52, 569-578.
    [120] Wiener, R. (1923). Differential space. J. Math. Phys. 2, 131-174.
    [121] Yor, M. (2001). Exponential Functionals of Brownian Motion and Related Processes.
    Springer.
    [122] Yoshimoto, A., Shoji, I. and Yoshimoto, Y. (1996). Application of a stochastic
    control model to a free market policy of rice. Statistical Aalysis of Time Series.
    Research Report No. 90, Institute of Statistical Mathematics. Tokyo.

    QR CODE
    :::