跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭高岳
Kao-Yueh Kuo
論文名稱: 正交多工正交振幅調變在非線性放大狀況下之互調變效應研究
Intermodulation Effect on Nonlinearly Power-Amplified OMOAM Signals
指導教授: 鐘嘉德
Char-Dir Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 78
中文關鍵詞: 傳輸率非線性效應放大器互調變正交多工正交振幅調變頻譜效益
外文關鍵詞: Spectral Efficiency, Transmission Rate, OMOAM, Intermodulation Effect, Power Amplifiers, Nonlinearity
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文擬對一新型調變家族─正交多工正交振幅調變[1] ( Orthogonally-Multiplexed Orthogonal Amplitude Modulation ) ,探討其非線性放大狀況下的互調變效應。論文中,使用放大器的三次諧波參數(Third-Order Harmonic)來設定非線性模型,而訊號的互調變效應(Intermodulation Effect)以頻帶內的功率來衡量,探討了第二類基底和第四類基底,在不同調變參數下,互調變的功率與趨勢。此外,並對傳輸率(Transmission Rate)與頻譜效益(Spectral Efficiency)加以考量,來作一綜合性的評估。


    A novel class of coherent Orthogonally-Multiplexed Orthogonal Amplitude Modulation (OMOAM) [1] signal is investigated in this thesis. The research focuses on the intermodulation effect caused by the nonlinear characteristic of the amplifiers such as high power amplifiers and solid-state power amplifiers. Intermodulation power is derived by an exact analysis, and the trends of the transmission rate and spectral efficiency are including to be compared.

    第一章 緒論 1.1 正交多工正交振幅調變與正交分頻多工系統…1 1.2 放大器之非線性與訊號互調變概念……………3 1.3 論文研究動機……………………………………7 第二章 系統概述 2.1 正交多工正交振幅調變訊號之簡介……………8 2.2 基底與參數的選擇………………………………16 2.3 互調變的族群、類型與衡量方式………………23 第三章 多脈波基底訊號之互調變效應 3.1 多脈波基底訊號指定技巧………………………26 3.2 多脈波基底訊號之互調變功率分析……………30 3.3 互調變的趨勢探討與功率表……………………43 3.4 傳輸率與頻譜效益的考量………………………52 第四章 單脈波基底訊號之互調變效應 4.1 單脈波基底訊號指定技巧………………………54 4.2 單脈波基底訊號之互調變功率分析……………56 4.3 互調變的趨勢探討與功率表……………………60 4.4 傳輸率與頻譜效益的考量………………………63 第五章 結論……………………………………………65 附錄A 功率調節函數與數量函數………………67 附錄B 不同基底與參數的互調變項……………71 附錄C 互調變計算範例……………………………76

    [1]Char-Dir Chung, “Orthogonally-Multiplexed Orthogonal Amplitude Modulation,” IEEE Trans. Commun., vol. 50, pp. 415–428, MAR. 2002.
    [2]S. M. Fleisher and S. Qu, “Quadrature frequency/phase modulation,” IEEE Trans. Commun., vol. 43, pp. 1513–1524, Feb./Mar./Apr. 1995.
    [3]D. Saha and T. G. Birdsall, “Quadrature-quadrature phase shift keying,” IEEE Trans. Commun., vol. 37, pp. 437–448, May 1989.
    [4]R. W. Chang, “Synthesis of band-limited orthogonal signals for multi-channel data transmission,” Bell Syst. Tech. J., vol. 45, pp. 1775–1796, Dec. 1966.
    [5]S. Darling, “On digital single-sideband modulators,” IEEE Trans. Circuit Theory, vol. CT-17, pp. 409–414, Aug. 1970.
    [6]S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun. Technol., vol. COM-19, pp. 628–634, Oct. 1971.
    [7]S. Hakin, Communication System 3rd ed. pp. 102–110, John Wiley & Sons, 1994.
    [8]L. J. Cimini, “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. COM-33, pp. 665–675, July 1985.
    [9]A. D. D’Andrea, V. Lottici, and R. Reggiannini “Nonlinear predistortion of OFDM signals over frequency-selective fading channels,” IEEE Trans. Commun., vol. 49, pp. 837–843, May 2001.
    [10]S. Andreoli, P. Banelli, F. Marrocolo, and C. Massini, “HPA nonlinear distortions in DVB-T systems simulation and measurement,” ISSSE 1998 URSI Int. Symp., pp. 124 –127, 1998.
    [11]E. Costa, M. Midrio, and S. Pupolin, “Impact of amplifier nonlinearities on OFDM transmission system performance,” IEEE Trans. Commun., vol. 3, pp. 37–39, Feb. 1999.
    [12]P. Banelli and S. Cacopardi, “Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels,” IEEE Trans. Commun., vol. 48, pp. 430–441, Mar. 2000.
    [13]D. Dardari, V. Tralli, and A. Vacarri, “A theoretical characterization of nonlinear distortion effects in OFDM systems,” IEEE Trans. Commun., vol. 48, pp. 1755–1764, Oct. 2000.
    [14]N. M. Blachman, “Bandpass nonlinearities,” IEEE Trans. on Inform. Theory, vol. IT-10, pp.162–164, Apr. 1964.
    [15]William C. Y. Lee, Mobile Communications Design Fundamentals 2nd ed. pp. 147–152, John Wiley & Sons, 1992.
    [16]Ziemer Tranter, Principles of Communications: Systems, Modulation, and Noise, 4th ed. pp. 78–80, John Wiley & Sons, 1995.
    [17]G. T. Zhou, “Analysis of spectral regrowth of weakly nonlinear power amplifiers.” IEEE Commun. Lett., vol. 4, pp. 357–359, Nov. 2000.
    [18]X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, pp. 131–133, May 1998.
    [19]H. Ochiai and H. Imai, “On the distribution of the peak-to-average power ratio in OFDM signals,” IEEE Trans. Commun., vol. 49, pp. 282–289, Feb. 2001.
    [20]http://www.motorola.com/
    [21]鐘立偉, “正交多工正交振幅調變在相加性白高斯雜訊通道下之次佳化同調之解調,” 國立中央大學電機工程研究所碩士論文,中華民國, 2001.
    [22]盧泱全, “正交多工正交振幅調變訊號之峰均功率比研究,” 國立中央大學電機工程研究所碩士論文,中華民國, 2001.
    [23]H. Nyquist, “Certain topics in telegraph transmission theory,” AIEE Trans., vol. 47, pp. 617–644, 1928.
    [24]J. C. Fuenzalida, W. L. Cook, and O. Shimbo, “Time-domain analysis of intermodulation effects caused by non-linear amplifiers.” COMSAT Tech. Rev., vol. 3, Apr. 1973.
    [25]P. K. Y. Chang and R. J. F. Fang, “Intermodulation in memoryless nonlinear amplifiers accessed by FM and/or PSK signals,” COMSAT Tech. Rev., vol. 8, Apr. 1978.
    [26]J. M. P. Fortes and R. Sampaio-Neto, “A fast algorithm for sorting and counting third-order intermodulation products,” IEEE Trans. Commun., vol. COM-34, pp. 1266–1272, Dec. 1986.
    [27]S.-W. Nam and E. J. Powers, “On the selective counting of third-order products,” IEEE Trans. Commun., vol.43, pp. 2405–2413, Aug. 1995.
    [28]H. E. Rowe, “Memoryless nonlinearities with Gaussian input,” Bell Sys. Tech. J., vol. 61, pp. 1519–1525, Sep. 1982.
    [29]J. G. Proakis, Digital Communications 4th-int. ed. pp. 44–61, McGraw-Hill, 2001.
    [30]O. A. Piogo and J. P. A. Albuquerque, “An indirect procedure for counting intermodulation products among narrow-band carriers,” IEEE Trans. Commun., vol. 40, pp. 345–350, Feb. 1992.

    QR CODE
    :::