| 研究生: |
陳宥榕 Yu-Jung Chen |
|---|---|
| 論文名稱: |
使用虛擬合成資料實現臺灣手語特徵擷取暨手型辨識 Hand Feature Extraction and Gesture Recognition for Taiwan Sign Language by Using Synthetic Datasets |
| 指導教授: | 蘇柏齊 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 虛擬合成資料 、臺灣手語 、特徵擷取 、手 型 辨識 |
| 外文關鍵詞: | synthetic datasets, Taiwanese sign language, feature extraction, gesture recognition |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對臺灣手語視訊進行手部特徵擷取暨手型辨識。首先,我們以 Unity3D 建立訓練資料集,利用 3D 手部模型合成於自然場景、人物場景及純色背景中,快速地且大量地產生高品質訓練資料,其中包含手部影像、手部輪廓、手部關節點。透過合成資料的使用,可以減少人工標記所可能產生的負擔與誤差。我們討論如何讓人工合成影像更貼近實際影像,藉由調整背景複雜度、膚色多樣性及加入動態模糊等方式產生多樣化影像以增加模型可靠度。接著,我們比較利用ResNeSt+Detectron2模型產生的邊界框(bounding box)和語義分割(semantic segmentation)、以及改良EfficientDet模型所產生之熱圖(heatmap)的完整性後,最終我們使用邊界框作為手型辨識的特徵擷取,利用邊界框切出手語視訊中的手部影像進行手型辨識。我們同樣以 Unity3D 建立訓練資料集,利用 3D 手部模型製作數個臺灣手語基本手型,再利用ResNeSt進行分類辨識。實驗結果顯示本研究所產生的大量且高品質虛擬合成資料能有效的應用於手部特徵擷取,及臺灣手語之手型辨識。
Hearing-impaired people rely on sign languages to communicate with each other but may have problems interacting with the persons who may not understand sign languages. Since sign languages belong to a type of visual languages, computer vision approaches to recognizing sign languages are usually considered feasible to bridge the gap. However, recognition of sign languages is a complex task, which requires classifying hand shapes, hand motions and facial expressions. The detection and classification of hand gestures should be the first step because hands are the most important elements. This research thus focuses on hand feature extraction and gesture recognition for Taiwan Sign Language (TSL) videos.
First, we established a synthetic dataset by using Unity3D. The advantage of using synthetic data is to reduce the effort of manual labeling and to avoid possible errors. A large dataset with high quality labeling can thus be achieved. The dataset is generated by changing hand shapes, colors and orientations. The background images are also changed to increase the robustness of the model. Motion blurriness is also added to make the synthetic data look closers to real cases. We compare three feature extractions: bounding boxes, semantic segmentation generated by the ResNeSt+Detectron2 and the heatmap generated by the EfficientDet. The bounding boxes are selected for the subsequent gesture recognition. We also employ Unity3D to create several basic sign gestures for TSL, and then use ResNeSt for classification and recognition.
Experimental results demonstrate that the synthetic dataset can effectively help to train the suitable models for hand feature extraction and gesture recognition in TSL videos.
[1] 衛生服務部統計處. 社會福利統計 https://dep.mohw.gov.tw/DOS/lp-2976-113.html
[2] Huang, Jung-Ning. "台灣手語手型辨識研究." 成功大學資訊工程學系學位論文 (2005): 1-55.
[3] Ko, Chih-Ang. "手勢跨越顏面部位的台灣手語辨識." 成功大學資訊工程學系學位論文 (2009): 1-64.
[4] 張光寒. "3D台灣手語辨識系統." (2007).
[5] 蕭怡涵. "基於 Kinect 之台灣手語單字辨識." (2013).
[6] 林政諺. "利用RGB-D相機之台灣手語辨識." (2016).
[7] 姚俊英. "台灣手語演進." 聽障教育期刊 (2006): 11-15.
[8] 丁立芬; 史文漢. "手能生橋. " 台北: 中華民國聾人協會, (2001).
[9] 潘秋雯執行編輯 "臺北市手語翻譯培訓教材第一冊修訂版" (2018)
[10] 全國特殊教育資訊網 https://tinyurl.com/y7v3kalk
[11] Sign Tube 手語天地 (YouTube)
[12] Huang, Deng-Yuan, Wu-Chih Hu, and Sung-Hsiang Chang. "Vision-based hand gesture recognition using PCA+ Gabor filters and SVM." 2009 fifth international conference on intelligent information hiding and multimedia signal processing. IEEE, 2009.
[13] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995): 273-297.
[14] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[15] Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
[16] Li, Xiang, et al. "Selective kernel networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2019.
[17] Tan, Mingxing, and Quoc V. Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." arXiv preprint arXiv:1905.11946 (2019).
[18] Girshick, Ross, et al. "Region-based convolutional networks for accurate object detection and segmentation." IEEE transactions on pattern analysis and machine intelligence 38.1 (2015): 142-158.
[19] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international conference on computer vision. 2015.
[20] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.
[21] He, Kaiming, et al. "Mask r-cnn." Proceedings of the IEEE international conference on computer vision. 2017.
[22] Unity. https://unity.com/
[23] Betancourt, A. "EgoHands: a unified framework for hand-based methods in first person vision videos." (2017).
[24] Mittal, Arpit, Andrew Zisserman, and Philip HS Torr. "Hand detection using multiple proposals." BMVC. Vol. 2. No. 3. 2011.
[25] Wang, Qi, et al. "Learning from synthetic data for crowd counting in the wild." Proceedings of the IEEE conference on computer vision and pattern recognition. 2019.
[26] Liu, Ziwei, et al. "Large-scale celebfaces attributes (celeba) dataset." Retrieved August 15 (2018): 2018.
[27] Tan, Mingxing, Ruoming Pang, and Quoc V. Le. "Efficientdet: Scalable and efficient object detection." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
[28] Zhang, Hang, et al. "Resnest: Split-attention networks." arXiv preprint arXiv:2004.08955 (2020).
[29] Wu, Yuxin, et al. "Detectron2." (2019).
[30] Lin, Tsung-Yi, et al. "Feature pyramid networks for object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[31] Liu, Shu, et al. "Path aggregation network for instance segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
[32] Ghiasi, Golnaz, Tsung-Yi Lin, and Quoc V. Le. "Nas-fpn: Learning scalable feature pyramid architecture for object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2019.
[33] Xie, Saining, et al. "Aggregated residual transformations for deep neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[34] Intersection over Union (IoU). https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
[35] Average Precision.(AP) https://cocodataset.org/#detection-eval
[36] Chinese Sign Language Recognition Dataset http://home.ustc.edu.cn/~pjh/openresources/cslr-dataset-2015/index.html
[37] Maćkiewicz, Andrzej, and Waldemar Ratajczak. "Principal components analysis (PCA)." Computers & Geosciences 19.3 (1993): 303-342.