跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳伯倫
Bo-Lun Wu
論文名稱: 利用新穎奈米遮罩製備低維度矽鍺奈米結構及其光電性質之研究
Fabrication and Optoelectronic Properties ofLow-Dimensional SiGe Nanostructures by UsingSelf-assembled Nanomasks
指導教授: 李勝偉
Sheng-Wei Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 62
中文關鍵詞: 矽鍺反射率奈米柱微影奈米球量子點
外文關鍵詞: polystyrene, SiGe, nanosphere, quantum dots, lithography, nanorods, reflectivity
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,利用高密度鍺量子點於矽基材上作為奈米遮罩以進行濕式選擇性蝕刻並製備出大面積矽基奈米尖端結構,蝕刻過程中,鍺奈米遮罩也緩慢地被縮小為尺寸更小之鍺核(Ge core)結構,其鍺量子點之尺寸也決定著所製備出之矽基奈米尖端結構之頂端尖度(apex sharpness),其所製備出之矽基奈米尖端將有良好的抗反射性質及優異之場發射性質,且其矽基奈米尖端之高場發射增強因子是源於高密度奈米尖端結構及其頂端之尖度,其將有助於電子穿越能障發射至真空之能力。
    此外,我們也利用了單層聚苯乙烯奈米球陣列為遮罩搭配反應性離子蝕刻(reactive ion etching)技術製作出高密度且有序之矽鍺奈米柱結構,其矽鍺奈米柱結構之形貌將可藉由蝕刻氣體之組成、蝕刻功率以及蝕刻時間來控制,其所製作出之高密度有序矽鍺奈米柱結構具有低反射率之特性以及特定波段之光致發光(photoluminescence)增強能力。
    利用奈米球微影術(nanosphere lithography)搭配乾式蝕刻及鍺量子點遮罩之濕式蝕刻將成功的製備出各式各樣形貌之矽基或矽鍺奈米結構,再利用AFM、SEM及TEM等顯微鏡來觀察其形貌之改變,並量測此些奈米結構之場發射、光致發光及反射率等性質,以得知其奈米結構之形貌對於光電性質之影響。本研究之技術對於製作矽鍺奈米結構將是低成本且具高效率的。


    In the present study, large-area Si nanotips were fabricated by selective chemical etching of self-assembled Ge quantum dots on Si. Taking advantage of the relatively low etching rate, high-density Ge dots act as virtual nanomasks for the underlying Si substrate. During selective chemical etching, Ge nanomasks shrink into the small Ge-core islands, which determine the apex sharpness of the resulting Si pyramidal tips. The Si pyramidal tips exhibited excellent antireflective and electron field emission characteristics compared to as-grown Ge islands. The high field enhancement factor of Si nanotips can be attributed to high tip density, nanoscale apex and the well controlled spacing between the nanostructures.
    Besides, in our study, high-density ordered SiGe nanorods were fabricated by reactive ion etching of monolayer polystyrene arrays. The morphology of the SiGe nanorods were controlled by variation of gas composition, power and duration of the dry etching. The fabricated nanorods exhibited low reflectance at 300nm-2000nm and excellent photo- luminescence property.
    By using nanosphere lithography with dry etching and wet etching of Ge masks, various morphologies of SiGe nanostructures were successfully fabricated. The morphology evolution, size and height of produced nanostructures have been investigated by AFM, SEM, TEM. We also measured field-emission, PL and reflectance properties of the nanostructures. The etching techniques in our study are really low-cost and efficient for fabricating various shapes of SiGe nanostructures.
    II

    目錄 摘要………………………………………………………………………I Abstract…………………………………………………………………II 致謝………………………………………………………………………III 目錄………………………………………………………………………IV 第一章 簡介 1 1-1前言 1 1-2 自組裝技術 4 1-2-1 鍺量子點自組裝技術 4 1-2-2 奈米球自組裝技術 5 1-3 微影技術 7 1-4 蝕刻技術 9 1-4-1 濕式蝕刻 9 1-4-2 乾式蝕刻 10 1-5 場發射原理 12 1-6 光致發光原理 13 1-7 光反射率原理 13 1-8 研究動機 15 參考文獻 16 第二章 實驗步驟 19 2-1 以自組裝鍺量子點奈米遮罩製作高效率矽基場發射源 19 2-1-1 基材前處理 19 2-1-2 大面積矽基奈米尖端結構製備 20 2-2 以聚苯乙烯奈米球為遮罩製備出矽鍺奈米柱陣列 20 2-2-1 奈米球溶液配製 21 2-2-2 自組裝聚苯乙烯奈米球陣列 21 2-2-3 奈米球縮小製程 22 2-2-4 矽基及矽鍺奈米柱陣列製備 22 2-3 分析及性質量測 22 2-3-1 原子力顯微鏡 22 2-3-2 穿透式電子顯微鏡 23 2-3-3 掃瞄式電子顯微鏡 23 2-3-4 場發射量測系統 24 2-3-5 光譜儀 24 2-3-6 光致發光 24 第三章 結果與討論 25 3-1 以自組裝鍺量子點遮罩製備矽基奈米尖端結構 25 3-1-1 自組裝鍺量子點成長 25 3-1-2 矽基奈米尖端 25 3-1-3 矽基奈米尖端之場發射性質量測 31 3-1-4 矽基奈米尖端之反射率量測 32 3-2 以自組裝聚苯乙烯奈米球製備有序矽基奈米結構 33 3-2-1 聚苯乙烯奈米球基板 34 3-2-2 聚苯乙烯奈米球尺寸縮小技術 34 3-2-3 矽基奈米柱陣列 38 3-2-3-1 蝕刻功率 38 3-2-3-2 氧通量 40 3-3 以自組裝排列聚苯乙烯奈米球製備有序矽鍺超晶格奈米柱陣列 42 3-3-1 20層矽鍺超晶格奈米柱陣列 42 3-3-1-1 20層矽鍺超晶格奈米柱陣列反射率量測 45 3-3-2 縮小遮罩所製備之20層矽鍺超晶格奈米柱陣列及其之光致發光性質 46 3-3-3 50層矽鍺超晶格奈米柱陣列 48 3-3-3-1 50層矽鍺超晶格奈米柱陣列反射率量測 50 3-3-3-2 50層矽鍺超晶格奈米柱陣列之光致發光性質 52 3-3-3-3 50層矽鍺超晶格奈米柱陣列之拉曼分析 53 3-3-4 縮小遮罩所製備之50層矽鍺超晶格奈米柱陣列及其之光致發光性質 54 參考文獻 58 第四章 結論 59 4-1 結論 59 4-2 未來之應用 62

    參考文獻
    [1] Thomas F. Krauss, Richard M. De La Rue, Progress in Quantum Electronics 23, 51-96 (1999).
    [2] J. B. K. Law, J. T. L. Thong, Appl. Phys. Lett. 88, 133114 (2006).
    [3] Cheng-Liang Hsu, Shoou-Jinn Chang, Yan-Ru Lin, Pin-Chou Li, Tzer-Shen Lin,Song-Yeu Tsai, Tsung-Heng Lu, I-Cherng Chen, Chemical Physics Letters 416, 75–78 (2005).
    [4] Junxue Fu, Bosoon Park, Greg Siragusa, Les Jones,Ralph Tripp, Yiping Zhao and Yong-Jin Cho, Nanotechnology 19, 155502 (2008).
    [5] Min Guoa, Peng Diao, Xindong Wang, Shengmin Cai, Journal of Solid State Chemistry 178, 3210–3215 (2005).
    [6] I-Chuan Yao, Pang Lin, Tseung-Yuen Tseng, Nanotechnology 20, 125202, (2009).
    [7] S.W. Lee, Y. L. Chueh, L. J. Chen,L. J. Chou, P. S. Chen, M.-J. Tsai, C. W. Liu, JOURNAL OF APPLIED PHYSICS 98, 073506 (2005).
    [8] Se Gyu Jang, Hyung Kyun Yu, Dae-Geun Choi, Seung-Man Yang, Chem. Mater. 18, 6103-6105 (2006).
    [9] I.N. Stranski,L. von Krastanow, Akad. Wiss. Lit. Mainz Math. Naturwiss.Kl.IIb. 146, 797 (1939).
    [10] A. Konkar, A. Madhukar, P. Chen, Appl. Phys. Lett., 72, 2 (1998).
    [11] Yue Li, Weiping Cai, Bingqiang Cao, Guotao Duan, Cuncheng Li, Fengqiang Sun, Haibo Zeng, J. Mater. Chem.,16, 609–612 (2006).
    [12] Y.J. Zhang, W. Lib, K.J. Chen, Journal of Alloys and Compounds 450, 512–516 (2008).
    [13] Se Gyu Jang, Hyung Kyun Yu, Dae-Geun Choi, Seung-Man Yang, Chem. Mater., 18, 6103-6105 (2008).
    [14] S. M. Binz, M. Hupalo, and M. C. Tringides, JOURNAL OF APPLIED PHYSICS 105, 094307 (2009).
    [15] Andrey V. Timofeev, Meri Helle, Matthias Meschke, Mikko Mo¨tto¨nen,Jukka P. Pekola, PRL 102, 200801 (2009).
    [16] T. Fukui, S. Ando,Y. Tokura, T. Toriyama, Appl. Phys. Lett. 58, 18 (1991).
    [17] O. Brandt, L. Tapfer, K. Ploog, Physical Review B, 44, 15 (1991).
    [18] A. Ronda, M. Abdallah, J.M. Gay, J. Stettner, I. Berbezier, Applied Surface Science 162–163, 576–583 (2000).
    [19] Richard Notzel, Klaus H. Ploog, Adv. Mater. 5, 1 (1993).
    [20] A. A. Guzelian, U. Banin, A. V. Kadavanich, X. Peng, and A. P. Alivisatos, Appl. Phys. Lett. 69, 10 (1996).
    [21] J. Ruvalds, A. Virosztek, Physical Review B, 43, 7 (1991).
    [22] Kin Man Yu, K. T. Chan, Appl. Phys. Lett. 56, 1 (1990).
    [23] G. Schuberth, F. Schaffler, M. Besson, G. Abstreiter,E. Gdrnik, Appl. Phys. Lett. 59, 25 (1991).
    [24] Ikai Lo, _ Y. L. Chen, W. Y. Pang, Y. C. Hsu, Jih-Chen Chiang, C. C. Yang, J. Y. Su, JOURNAL OF APPLIED PHYSICS 105, 093716 (2009).
    [25] Philip N. Bartlett, Peter R. Birkin and Mohamed A. Ghanem, Chem. Commun., 1671–1672 (2000).
    [26] J. L. Gole, J. D. Stout, W. L. Rauch,Z. L. Wang, Appl. Phys. Lett., 76, 17 (2000).
    [27] Aiping Zhu, Zhehua Shi, Aiyun Cai, Feng Zhao, Tianqing Liao, Polymer Testing, 27, 540–547 (2008).
    [28] J. Rybczynski, U. Ebels, M. Giersig, Colloids and Surfaces A: Physicochem. Eng. Aspects, 219, 1-6 (2003).
    [29] Ahmad Reza Hajiaboli, Bo Cui, M. Kahrizi, Vo-Van Truong, P hys. Status Solidi A 206, 5, 976–979 (2009).
    [30] C. Grant Willson , Bernard J. Roman, Nano Focus, 2,7 1323–1328 (2008).
    [31] Y Liu, J Bishop, LWilliams, S Blair,J Herron, Nanotechnology, 15, 1368–1374 (2004).
    [32] Mingxing Wang, Kenneth E. Gonsalves, Monica Rabinovich, Wang Yueh,Jeanette M. Roberts, J. Mater. Chem., 17, 1699–1706, (2007).
    [33] Huai-Chung Chen, Chun-Wen Wang, Sheng-Wei Lee, Lih-Juann Chen, Adv. Mater., 18, 367–370 (2006).
    [34] Leon AWoldering, R Willem Tjerkstra, Henri V Jansen,Irwan D Setija , Willem L Vos, Nanotechnology, 19, 145304 (2008).
    [35] Wei Li, Ling Xu, Wei-Ming Zhao, Ping Sun, Xin-Fan Huang, Kun-Ji Chen, Applied Surface Science, 253, 9035–9038 (2007).
    [36] Ho-Yen Hsieh, Sheng-Huang Huang, Kao-Fen Liao, Sheng-Kai Su,
    Chih-Huang Lai and Lih-Juann Chen, Nanotechnology, 18, 505305 (2007).
    [37] Yi-Hao Pai, Fan-ShuenMeng, Chun-Jung Lin,Hao-Chung Kuo, Shih-Hsin Hsu, Yia-Chung Chang, Gong-Ru Lin, Nanotechnology, 20, 035303 (2009).
    [38] Fowler. R.H., Nordheim. L.W., Proc.R.Soc. London.Ser. A. (1928).
    [39] Yu. V. Nazarov, Physical Review B, 43, 7 (1991).
    [40] Z. H. Lu, M. C. Hanna, D.M Szmyd, E. G. Oh, A. Majerfeld, Appl. Phys. Lett., 56, 2 (1990).
    [41] J. P. Noel, J. E. Greene, N. L. Rowell, D. C. Houghton, Appl. Phys. Lett., 56, 3 (1990).
    [42] Hongbo Xu, Nan Lu, Dianpeng Qi, Juanyuan Hao, Liguo Gao, Bo Zhang, Lifeng Chi, Biomimetics, 4, 11, 1972–1975 (2008).
    [43] Gong-Ru Lin, Ya-Chung Chang, En-Shao Liu, Hao-Chung Kuo, Huang-Shen Lin, Appl. Phys. Lett., 90, 181923 (2007).
    [44] J Yoo, Kyunghae Kim, M Thamilselvan, N Lakshminarayn, Young Kuk Kim, Jaehyeong Lee, Kwon Jong Yoo, Junsin Yi, J. Phys. D: Appl. Phys., 41, 125205 (2008).
    [45] Wei Li, Jiang Zhou, Xian-gao Zhang, Jun Xu, Ling Xu,Weiming Zhao, Ping Sun, Fengqi Song, JianguoWan, Kunji Chen, Nanotechnology, 19, 135308 (2008).
    [46] Ling Xu, Wei Li, Jun Xu, Jiang Zhou, Liangcai Wu, Xian-Gao Zhang, Zhongyuan Ma, Kunji Chen, Applied Surface Science, 255, 5414–5417 (2009).
    [47] B. Gonzalez-Diaz, R. Guerrero-Lemus, J. Mendez-Ramos, B. Diaz-Herrera, V.D. Rodriguez, Sensors and Actuators A, 150, 97–101 (2009).
    [48] Chengyao Li, Min Gao1, Chen Ding, Xiaoxian Zhang,Lihuan Zhang, Qing Chen and Lian-Mao Peng, Nanotechnology, 20, 175703 (2009).
    [49] S. Winderbaum, O. Reinhold, F. Yun, Solar Energy Materials and Solar Cells, 46, 239-248 (1997).
    [50] Philippe Lalanney and G Michael Morrisz, Nanotechnology, 8, 53–56 (1997).

    QR CODE
    :::