跳到主要內容

簡易檢索 / 詳目顯示

研究生: 阮氏金楓
Nguyen Thi Kim Huong
論文名稱: VHL與KIM-1的功能關係研究
Study of the functional relationship between VHL and KIM-1 in kidney tubular cells
指導教授: 徐沺
Tien Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 系統生物與生物資訊研究所
Graduate Institute of Systems Biology and Bioinformatics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 55
中文關鍵詞: KIM-1組合式VHL組合ccRCC移民VHL-KIM-1雙擊倒DEGs
外文關鍵詞: KIM-1 knockdown, VHL knockdown, ccRCC, migration, VHL-KIM-1 double-knockdown, DEGs
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腎細胞癌( RCC)的發生和死亡率逐年增加。該病在早期大多數都無症狀,但
    轉移的機率高。在 RCC 亞型中,透明腎細胞癌(ccRCC)最常見,死亡人數最
    多。其中有超過 70%的 ccRCC 病例在 von Hippel-Lindau 抑癌基因(VHL)中攜
    帶基因組或表觀遺傳缺陷。而我們實驗室先前就已經建立了一種包含腎臟小管
    中 Vhlh(小鼠 VHL 基因座)基因條件失活的小鼠模型,這小鼠模型會導致腎臟
    增生,炎性和纖維化病變。最初的微陣列分析確定了與野生型相比, HAVCR-1
    在突變小鼠腎臟中呈現高表達。 HAVCR-1(也稱為 KIM-1 或 TIM-1)是 1 型膜
    蛋白,已被公認是腎臟疾病的診斷標記。最近,一些研究還表明, KIM-1 在包
    括 ccRCC 的人類癌症中異常表達,所以我們假設 KIM-1 可能有助於 ccRCC 的
    發展。但是 KIM-1 和 VHL 之間的功能相關性仍然是未知的。在這裡,我們分別
    在有或沒有 VHL抑制的近端腎小管上皮細胞系(HK-2)中產生了 KIM-1抑制,
    並進行了RNA序列分析,比較對照VHL抑制和KIM-1的差異表達基因(DEG)。
    我們發現組合式和 VHL-KIM-1 雙組合式有許多 DEG,並且使用 Ingenuity
    Pathway Analysis(IPA)對 DEG 進行富集分析,在 VHL 抑制的細胞中,炎症,
    增殖和間充質的轉化途徑有增加,而細胞死亡和凋亡途徑則呈現減少。熱圖聚
    類分析揭示了 4 個不同的基因組,它們在不同的基因敲低背景下顯示出不同的
    表達模式,表明 VHL 和 KIM-1 之間的功能關係可能不是簡單的線性途徑。有趣
    的是通過傷口癒合實驗對細胞遷移進行了測試,我們發現 VHL 基因敲落細胞中
    的 KIM-1 基因敲落可以抑制細胞遷移。我們的結果表明,與 VHL 單敲除相比,
    HK-2中的KIM-1和VHL的雙重敲除降低了多種細胞因子誘導的炎症途徑表達,
    並且影響了腫瘤的發展途徑。因此,這些結果在未來可以用來創造新 ccRCC 或
    腎癌治療的標靶。


    The occurrence and death rates of renal cell carcinoma (RCC) are increasing each year.
    However, this disease is mostly asymptomatic at an early stage but highly metastatic.
    Among the RCC subtypes, the clear-cell RCC (ccRCC) is the most prevalent and
    accounts for the most deaths. Importantly, more than 70% of the ccRCC cases carry
    either genomic or epigenetic defects in the von Hippel-Lindau tumor suppressor gene
    (VHL). Our laboratory has previously established a mouse model containing
    conditional inactivation of the Vhlh (the mouse VHL locus) gene in the kidney tubules,
    which results in hyperplastic, inflammatory, and fibrotic lesions in the kidneys. Initial
    microarray analysis identified high expression of HAVCR-1 in mutant mouse kidneys
    compared to wild-type. HAVCR-1 (also known as KIM-1 or TIM-1) is a type 1
    membrane protein and has been recognized as a diagnostic marker for kidney disease.
    Recently, several studies have also shown that KIM-1 is expressed abnormally in
    human cancers, including ccRCC. This leads us to hypothesize that KIM-1 may
    contribute to the progression of ccRCC. However, the functional correlation between
    KIM-1 and VHL are still unknown. Here, we generated KIM-1 knockdown in proximal
    tubule epithelial cell line (HK-2) with or without VHL knockdown, and RNA sequencing analysis was performed to analyze the differentially expressed genes
    (DEGs) comparing control, VHL knockdown, KIM-1 knockdown, and VHL-KIM-1
    double knockdown. Many DEGs were found, and the enrichment analysis using the
    Ingenuity Pathway Analysis (IPA) software on DEGs showed that in VHL knockdown
    cells, inflammatory, proliferative, and mesenchymal transition pathways are increased,
    while cell death and apoptosis pathways are reduced, consistent with the tumorigenic
    property of these VHL-defective kidney cells. Heatmap clustering analysis revealed 4
    distinct groups of genes that show different expression patterns in different gene
    knockdown backgrounds, suggesting the functional relationship between VHL and
    KIM-1 is probably not a simple linear pathway. Interestingly, cell migration was tested
    by wound healing experiment, and we found that KIM-1 knockdown in VHL
    knockdown cells can inhibit cell migration. Our results showed that double knockdown
    of KIM-1 and VHL in HK-2, compared with VHL single knockdown, reduces the
    expression of multiple cytokines-induced inflammation pathways, and influences
    tumor progression pathways. Thereby, these results together point to a new ccRCC or
    renal cancer treatment targets in general.

    List of Contents 摘要... v Abstract vi Acknowledgment vii List of Contents viii CHAPTER 1: INTRODUCTION. 1 1-1. Renal cell carcinoma (RCC) and VHL deficiency. 1 1-1.1.Renal cell carcinoma (RCC).. 1 1-1-2. ccRCC and VHL deficiency . 2 1-2. Kidney injury molecule-1... 3 1-2-1. KIM-1 overview 3 1-2-2. KIM-1 is expressed in many cancers 6 1-2-3. Potential role of KIM-1 in the development of RCC 6 1-2-4. KIM-1 levels in urine and serum samples are higher in patients with localized RCC.. 7 CHAPTER 2: MATERIALS AND METHODS 11 2-1. Cell culture .. 11 2-2. Generation of KIM-1 knockdown stable cell line ... 11 2-3. Generation of VHL knockdown stable cell line .. 13 2-4. Generation of KIM-1 and VHL double knockdown stable cell line 13 2-4-1. Construct shKIM-1 plasmid with TRC vector containing Blasticidin resistantgene. 13 2-4-2. Transfect shKIM-1 plasmid into VHL loss-of-function stable cell line.. 13 2-5. Reverse transcription and real-time quantitative polymerase chain reaction(qPCR) 14 2-6. Western blot analysis .. 16 2-7. Paraffin immunohistochemistry and histological staining .. 16 2-8. Paraffin immunofluorescence double staining... 17 2-9. Cell migration assay 17 2-10. RNA sequencing: .. 17 2-11. Statistical Analysis 18 CHAPTER 3: RESULTS 19 3-1. KIM-1 expression in Vhlh knockout mouse model and ccRCC tissues. 19 3-2. VHL knockdown in human proximal tubule cell line increases KIM-1 expression 21 3-3. KIM-1 single knockdown and VHL and KIM-1 double knockdown HK-2 cells 3-4. Single knockdown KIM-1, double knockdown VHL and KIM-1 HK-2 differential genes expression PCA and Heatmap ... 25 3-4-1. PCA and heatmap analyses . 25 3-4-2. Pathway analysis . 28 3-4-3. Downregulation of KIM-1 inhibits migration behavior of VHL-defective kidney cells. 33 CHAPTER 4: CONCLUSION ... 36

    1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al.
    Cancer incidence and mortality worldwide: sources, methods and major patterns
    in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86.
    2. Mahdavifar N, Ghoncheh M, Pakzad R, Momenimovahed Z, Salehiniya
    H. Epidemiology, Incidence and Mortality of Bladder Cancer and their
    Relationship with the Development Index in the World. Asian Pac J Cancer Prev.
    2016;17(1):381-6.
    3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin.
    2019;69(1):7-34.
    4. Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med.
    2005;353(23):2477-90.
    5. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger
    M, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009.
    6. Jonasch E, Gao J, Rathmell WK. Renal cell carcinoma. Bmj.
    2014;349:g4797.
    7. Nabi S, Kessler ER, Bernard B, Flaig TW, Lam ET. Renal cell carcinoma:
    a review of biology and pathophysiology. F1000Res. 2018;7:307.
    8. Linehan WM, Ricketts CJ. The Cancer Genome Atlas of renal cell
    carcinoma: findings and clinical implications. Nat Rev Urol. 2019;16(9):539-52.
    9. Minervini G, Mazzotta GM, Masiero A, Sartori E, Corrà S, Potenza E, et
    al. Isoform-specific interactions of the von Hippel-Lindau tumor suppressor
    protein. Sci Rep. 2015;5:12605.
    10. Gossage L, Eisen T. Alterations in VHL as potential biomarkers in renalcell carcinoma. Nat Rev Clin Oncol. 2010;7(5):277-88.
    11. Pritchett TL, Bader HL, Henderson J, Hsu T. Conditional inactivation of
    the mouse von Hippel-Lindau tumor suppressor gene results in wide-spread
    hyperplastic, inflammatory and fibrotic lesions in the kidney. Oncogene.
    2015;34(20):2631-9.
    12. Kaplan G, Totsuka A, Thompson P, Akatsuka T, Moritsugu Y, Feinstone
    SM. Identification of a surface glycoprotein on African green monkey kidney
    cells as a receptor for hepatitis A virus. Embo j. 1996;15(16):4282-96.
    13. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, et al.
    Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule
    containing a novel immunoglobulin domain, is up-regulated in renal cells after
    injury. J Biol Chem. 1998;273(7):4135-42.
    14. McIntire JJ, Umetsu SE, Akbari O, Potter M, Kuchroo VK, Barsh GS, et
    al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the
    linked Tim gene family. Nat Immunol. 2001;2(12):1109-16.
    15. de Souza AJ, Oriss TB, O'Malley K J, Ray A, Kane LP. T cell Ig and
    mucin 1 (TIM-1) is expressed on in vivo-activated T cells and provides a
    costimulatory signal for T cell activation. Proc Natl Acad Sci U S A.
    2005;102(47):17113-8.
    16. Ding Q, Yeung M, Camirand G, Zeng Q, Akiba H, Yagita H, et al.
    Regulatory B cells are identified by expression of TIM-1 and can be induced40
    through TIM-1 ligation to promote tolerance in mice. J Clin Invest.
    2011;121(9):3645-56.
    17. Ndhlovu LC, Lopez-Vergès S, Barbour JD, Jones RB, Jha AR, Long BR,
    et al. Tim-3 marks human natural killer cell maturation and suppresses cellmediated cytotoxicity. Blood. 2012;119(16):3734-43.
    18. Nozaki Y, Nikolic-Paterson DJ, Snelgrove SL, Akiba H, Yagita H,
    Holdsworth SR, et al. Endogenous Tim-1 (Kim-1) promotes T-cell responses
    and cell-mediated injury in experimental crescentic glomerulonephritis. Kidney
    Int. 2012;81(9):844-55.
    19. Patel J, Bozeman EN, Selvaraj P. Taming dendritic cells with TIM-3:
    another immunosuppressive strategy used by tumors. Immunotherapy.
    2012;4(12):1795-8.
    20. Guo L, Takino T, Endo Y, Domoto T, Sato H. Shedding of kidney injury
    molecule-1 by membrane-type 1 matrix metalloproteinase. J Biochem.
    2012;152(5):425-32.
    21. Santiago C, Ballesteros A, Martínez-Muñoz L, Mellado M, Kaplan GG,
    Freeman GJ, et al. Structures of T cell immunoglobulin mucin protein 4 show a
    metal-Ion-dependent ligand binding site where phosphatidylserine binds.
    Immunity. 2007;27(6):941-51.
    22. Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS,
    Bonventre JV. Kidney injury molecule-1 is a phosphatidylserine receptor that
    confers a phagocytic phenotype on epithelial cells. J Clin Invest.
    2008;118(5):1657-68.
    23. Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH. TIM genes: a
    family of cell surface phosphatidylserine receptors that regulate innate and
    adaptive immunity. Immunol Rev. 2010;235(1):172-89.
    24. Kobayashi N, Karisola P, Peña-Cruz V, Dorfman DM, Jinushi M, Umetsu
    SE, et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate
    uptake of apoptotic cells. Immunity. 2007;27(6):927-40.
    25. Ajay AK, Kim TM, Ramirez-Gonzalez V, Park PJ, Frank DA, Vaidya
    VS. A bioinformatics approach identifies signal transducer and activator of
    transcription-3 and checkpoint kinase 1 as upstream regulators of kidney injury
    molecule-1 after kidney injury. J Am Soc Nephrol. 2014;25(1):105-18.
    26. Cao W, Ryan M, Buckley D, O'Connor R, Clarkson MR. Tim-4 inhibition
    of T-cell activation and T helper type 17 differentiation requires both the
    immunoglobulin V and mucin domains and occurs via the mitogen-activated
    protein kinase pathway. Immunology. 2011;133(2):179-89.
    27. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV.
    Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat
    Med. 2010;16(5):535-43, 1p following 143.
    28. Forbes JM, Hewitson TD, Becker GJ, Jones CL. Ischemic acute renal
    failure: long-term histology of cell and matrix changes in the rat. Kidney Int.
    2000;57(6):2375-85.
    29. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney
    Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule
    injury. Kidney Int. 2002;62(1):237-44.41
    30. Bonventre JV. Dedifferentiation and proliferation of surviving epithelial
    cells in acute renal failure. J Am Soc Nephrol. 2003;14 Suppl 1:S55-61.
    31. Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV. Kidney
    injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced
    renal injury. Am J Physiol Renal Physiol. 2004;286(3):F552-63.
    32. Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV.
    Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early
    detection of kidney tubular injury. Am J Physiol Renal Physiol.
    2006;290(2):F517-29.
    33. Han WK, Alinani A, Wu CL, Michaelson D, Loda M, McGovern FJ, et
    al. Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal
    cell carcinoma. J Am Soc Nephrol. 2005;16(4):1126-34.
    34. Gautier JC, Zhou X, Yang Y, Gury T, Qu Z, Palazzi X, et al. Evaluation
    of novel biomarkers of nephrotoxicity in Cynomolgus monkeys treated with
    gentamicin. Toxicol Appl Pharmacol. 2016;303:1-10.
    35. Sinha V, Vence LM, Salahudeen AK. Urinary tubular protein-based
    biomarkers in the rodent model of cisplatin nephrotoxicity: a comparative
    analysis of serum creatinine, renal histology, and urinary KIM-1, NGAL, and
    NAG in the initiation, maintenance, and recovery phases of acute kidney injury.
    J Investig Med. 2013;61(3):564-8.
    36. Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson
    KL, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity
    biomarkers in urine and kidney following acute exposure to gentamicin, mercury,
    and chromium. Toxicol Sci. 2008;101(1):159-70.
    37. Cuadros T, Trilla E, Vilà MR, de Torres I, Vilardell J, Messaoud NB, et
    al. Hepatitis A virus cellular receptor 1/kidney injury molecule-1 is a
    susceptibility gene for clear cell renal cell carcinoma and hepatitis A virus
    cellular receptor/kidney injury molecule-1 ectodomain shedding a predictive
    biomarker of tumour progression. Eur J Cancer. 2013;49(8):2034-47.
    38. Lin F, Zhang PL, Yang XJ, Shi J, Blasick T, Han WK, et al. Human
    kidney injury molecule-1 (hKIM-1): a useful immunohistochemical marker for
    diagnosing renal cell carcinoma and ovarian clear cell carcinoma. Am J Surg
    Pathol. 2007;31(3):371-81.
    39. Zheng X, Xu K, Chen L, Zhou Y, Jiang J. Prognostic value of TIM-1
    expression in human non-small-cell lung cancer. J Transl Med. 2019;17(1):178.
    40. Vilà MR, Kaplan GG, Feigelstock D, Nadal M, Morote J, Porta R, et al.
    Hepatitis A virus receptor blocks cell differentiation and is overexpressed in
    clear cell renal cell carcinoma. Kidney Int. 2004;65(5):1761-73.
    41. Vermeulen R, Zhang L, Spierenburg A, Tang X, Bonventre JV, Reiss B,
    et al. Elevated urinary levels of kidney injury molecule-1 among Chinese factory
    workers exposed to trichloroethylene. Carcinogenesis. 2012;33(8):1538-41.
    42. Bailly V, Zhang Z, Meier W, Cate R, Sanicola M, Bonventre JV.
    Shedding of kidney injury molecule-1, a putative adhesion protein involved in
    renal regeneration. J Biol Chem. 2002;277(42):39739-48.
    43. Zhang PL, Mashni JW, Sabbisetti VS, Schworer CM, Wilson GD,
    Wolforth SC, et al. Urine kidney injury molecule-1: a potential non-invasive42
    biomarker for patients with renal cell carcinoma. Int Urol Nephrol.
    2014;46(2):379-88.
    44. Ichimura T, Brooks CR, Bonventre JV. Kim-1/Tim-1 and immune cells:
    shifting sands. Kidney Int. 2012;81(9):809-11.
    45. Brooks CR, Yeung MY, Brooks YS, Chen H, Ichimura T, Henderson JM,
    et al. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent
    clearance of apoptotic cells to antigen presentation. Embo j. 2015;34(19):2441-
    64.
    46. Yang L, Brooks CR, Xiao S, Sabbisetti V, Yeung MY, Hsiao LL, et al.
    KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest.
    2015;125(4):1620-36.
    47. de Souza AJ, Oak JS, Jordanhazy R, DeKruyff RH, Fruman DA, Kane
    LP. T cell Ig and mucin domain-1-mediated T cell activation requires
    recruitment and activation of phosphoinositide 3-kinase. J Immunol.
    2008;180(10):6518-26.
    48. Cuadros T, Trilla E, Sarró E, Vilà MR, Vilardell J, de Torres I, et al.
    HAVCR/KIM-1 activates the IL-6/STAT-3 pathway in clear cell renal cell
    carcinoma and determines tumor progression and patient outcome. Cancer Res.
    2014;74(5):1416-28.
    49. Xu J, Sun L, Sun W, Tian J, Guo H. Targeted Silencing of Kim-1 Inhibits
    the Growth of Clear Cell Renal Cell Carcinoma Cell Line 786-0 In Vitro and In
    Vivo. Oncol Res. 2018;26(7):997-1003.
    50. Thomas LJ, Vitale L, O'Neill T, Dolnick RY, Wallace PK, Minderman H,
    et al. Development of a Novel Antibody-Drug Conjugate for the Potential
    Treatment of Ovarian, Lung, and Renal Cell Carcinoma Expressing TIM-1. Mol
    Cancer Ther. 2016;15(12):2946-54.
    51. Kondratowicz AS, Lennemann NJ, Sinn PL, Davey RA, Hunt CL,
    Moller-Tank S, et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a
    receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad
    Sci U S A. 2011;108(20):8426-31.
    52. Mariat C, Degauque N, Balasubramanian S, Kenny J, DeKruyff RH,
    Umetsu DT, et al. Tim-1 signaling substitutes for conventional signal 1 and
    requires costimulation to induce T cell proliferation. J Immunol.
    2009;182(3):1379-85.
    53. Mesri M, Smithson G, Ghatpande A, Chapoval A, Shenoy S, Boldog F,
    et al. Inhibition of in vitro and in vivo T cell responses by recombinant human
    Tim-1 extracellular domain proteins. Int Immunol. 2006;18(3):473-84.
    54. Meyers JH, Chakravarti S, Schlesinger D, Illes Z, Waldner H, Umetsu
    SE, et al. TIM-4 is the ligand for TIM-1, and the TIM-1-TIM-4 interaction
    regulates T cell proliferation. Nat Immunol. 2005;6(5):455-64.
    55. Schweigert O, Dewitz C, Möller-Hackbarth K, Trad A, Garbers C, RoseJohn S, et al. Soluble T cell immunoglobulin and mucin domain (TIM)-1 and -4
    generated by A Disintegrin And Metalloprotease (ADAM)-10 and -17 bind to
    phosphatidylserine. Biochim Biophys Acta. 2014;1843(2):275-87.43
    56. Sizing ID, Bailly V, McCoon P, Chang W, Rao S, Pablo L, et al. Epitopedependent effect of anti-murine TIM-1 monoclonal antibodies on T cell activity
    and lung immune responses. J Immunol. 2007;178(4):2249-61.
    57. Curtiss M, Colgan J. The role of the T-cell costimulatory molecule Tim-
    1 in the immune response. Immunol Res. 2007;39(1-3):52-61.
    58. Mijuskovic M, Stanojevic I, Milovic N, Cerovic S, Petrovic D, Maksic D,
    et al. Tissue and urinary KIM-1 relate to tumor characteristics in patients with
    clear renal cell carcinoma. Int Urol Nephrol. 2018;50(1):63-70.
    59. Morrissey JJ, London AN, Lambert MC, Kharasch ED. Sensitivity and
    specificity of urinary neutrophil gelatinase-associated lipocalin and kidney
    injury molecule-1 for the diagnosis of renal cell carcinoma. Am J Nephrol.
    2011;34(5):391-8.
    60. Scelo G, Muller DC, Riboli E, Johansson M, Cross AJ, Vineis P, et al.
    KIM-1 as a Blood-Based Marker for Early Detection of Kidney Cancer: A
    Prospective Nested Case-Control Study. Clin Cancer Res. 2018;24(22):5594-
    601.
    61. Song J, Yu J, Prayogo GW, Cao W, Wu Y, Jia Z, et al. Understanding
    kidney injury molecule 1: a novel immune factor in kidney pathophysiology.
    Am J Transl Res. 2019;11(3):1219-29.
    62. Cairns P. Renal cell carcinoma. Cancer Biomark. 2010;9(1-6):461-73.
    63. Kuo CY, Lin CH, Hsu T. VHL Inactivation in Precancerous Kidney Cells
    Induces an Inflammatory Response via ER Stress-Activated IRE1α Signaling.
    Cancer Res. 2017;77(13):3406-16.
    64. Xue J, Li Y, Yi J, Jiang H. HAVCR1 Affects the MEK/ERK Pathway in
    Gastric Adenocarcinomas and Influences Tumor Progression and Patient
    Outcome. Gastroenterol Res Pract. 2019;2019:6746970.
    65. Mack NA, Whalley HJ, Castillo-Lluva S, Malliri A. The diverse roles of
    Rac signaling in tumorigenesis. Cell Cycle. 2011;10(10):1571-81.
    66. Drucker BJ. Renal cell carcinoma: current status and future prospects.
    Cancer Treat Rev. 2005;31(7):536-45.
    67. Ricketts CJ, Morris MR, Gentle D, Brown M, Wake N, Woodward ER,
    et al. Genome-wide CpG island methylation analysis implicates novel genes in
    the pathogenesis of renal cell carcinoma. Epigenetics. 2012;7(3):278-90.
    68. Wu X, Scelo G, Purdue MP, Rothman N, Johansson M, Ye Y, et al. A
    genome-wide association study identifies a novel susceptibility locus for renal
    cell carcinoma on 12p11.23. Hum Mol Genet. 2012;21(2):456-62.
    69. Liu L, Song Z, Zhao Y, Li C, Wei H, Ma J, et al. HAVCR1 expression
    might be a novel prognostic factor for gastric cancer. PLoS One.
    2018;13(11):e0206423.
    70. Kishimoto W, Nishikori M, Arima H, Miyoshi H, Sasaki Y, Kitawaki T,
    et al. Expression of Tim-1 in primary CNS lymphoma. Cancer Med.
    2016;5(11):3235-45.
    71. Wang Y, Martin TA, Jiang WG. HAVcR-1 expression in human
    colorectal cancer and its effects on colorectal cancer cells in vitro. Anticancer
    Res. 2013;33(1):207-14.44
    72. Wang H, Zhang X, Sun W, Hu X, Li X, Fu S, et al. Activation of TIM1
    induces colon cancer cell apoptosis via modulating Fas ligand expression.
    Biochem Biophys Res Commun. 2016;473(2):377-81.
    72. Hagiwara, Yuki (2016) Study of the association between inflammation and the
    initiation of renal cell carcinoma: microarray-based gene profiling analysis. Thesis,
    National Central University.
    73. The microarray data: Deposited in Gene Expression Omnibus (GEO) and are
    accessible through GEO Series accession number GSE116326
    (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116326).

    QR CODE
    :::