| 研究生: |
陳諾 No Chen |
|---|---|
| 論文名稱: | Deformation Dynamics of Active 2D Tetragonal Pseudo-Crystal |
| 指導教授: |
羅健榮
Chien-Jung Lo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 主動物質 、桿狀粒子 、四方結構 、形變 、偽晶格 、非平衡 、融化 、相變 、錯位 |
| 外文關鍵詞: | Active Matter, Rod-like Particle, Tetratic Order, Deformation, Pseudo-Crystal, Non-equilibrium, Melting, Phase Transition, Dislocation |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
主動推進粒子表現出各種非平衡湧現行為。主動推進粒子的形狀對於決定 全局湧現行為至關重要。與球形粒子不同,棒狀粒子通過簡單的體積排斥力和 局部交互作用湧現出有序地排列。因此,透過模擬主動布朗桿狀粒子(ABR)可 以形成仿生的紊流、群游和阻塞狀態。目前二維 ABR 的研究主要集中在集體運 動上,對動力學知之甚少。通過對細菌群落動力學的實驗觀察,我們發現局部 的動力平衡對阻塞狀態至關重要。受這一發現的啟發,我們設計了一種四方假 晶 (TPC),該晶格具有三個垂直交叉的活性棒。然後我們使用 LAMMPS 進行布 朗動力學模擬來研究活性偽晶格的動力學。
我們發現四元有序和晶體穩定性對密度和主動推進力敏感。在較低的系統 密度或更大的主動推進力下,TPC 會熔化成紊流狀態。另一方面,即使在高活 動力下,TPC 也可以在高密度下保持有序的晶格狀態。有趣的是,系統中存在 介於(紊流)無序狀態和(阻塞)有序狀態的中間態。通過研究此一少缺陷的長壽 命 TPC 中間態的位錯,我們揭示了 ABR 之間的剪應力誘導了熔化過程。此 外,我們發現 ABR 的密度和主動推進力的作用對我們的二維 ABR 系統中的變 形和熔化動力學有不同的影響。我們的研究為主動推進物質的研究提供了新的 方向。
Active matter exhibits various non-equilibrium emergence behaviors. The shape of active matter individual particles is critical for the local interaction that determines the global emergence behaviors. Unlike spherical particles, rod- shaped particles show strong particle-particle alignment by simple volume exclu- sion. Therefore, active Brownian rods (ABR) can form biomimetic, turbulence, swarming, and jamming states. The current research of two-dimensional ABR focus on collective motion, and little is known about the dynamics. From the experimental observation of jamming dynamics in bacterial swarming, we found that the active force balance is critical for jamming. Inspired by this finding, we designed a tetragonal pseudo-crystal (TPC) that unit cells with three active rods crisscrossed orthogonally. We then used LAMMPS to perform Brownian dynamic simulation to study the dynamics of the active pseudo-crystal.
We found that the tetratic order and crystal stability are sensitive to the packing ratio and the active force. At a lower packing ratio or more vital active force, the TPC can melt into a turbulence state. On the other hand, the TPC can maintain the tetratic order at a high packing ratio even at a highly active force. Interestingly, there are long-living ordered intermediate states that the system contains few defects. By studying the dislocations of intermediate states of TPC, we reveal that the shear slipping events between ABR induce the melting process. Also, we found that the role of packing ratio and active force of ABR have different effects on deformation and melting dynamics in our two-dimensional ABR system. This work provides a new direction of active matter research on the Pseudo-crystal.
[1] Tamas Vicsek, Andras Czirok, Eshel Ben-Jacob, Inon Cohen, and Ofer Shoche. Novel Type of Phase Transition in a System of Self-Driven Parti- cles. Physical Review Letters, 75(6):1226–1229, 1995.
[2] Thomas Mu ̈ller, Daniel De Las Heras, Ingo Rehberg, and Kai Huang. Or- dering in granular-rod monolayers driven far from thermodynamic equilib- rium. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 91(6):1–7, 2015.
[3] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E. Goldstein, H. Lowen, and J. M. Yeomans. Meso-scale turbulence in living fluids. Pro- ceedings of the National Academy of Sciences, 109(36):14308–14313, 2012.
[4] Gabriel S. Redner, Michael F. Hagan, and Aparna Baskaran. Structure and dynamics of a phase-separating active colloidal fluid. Physical Review Letters, 110(5):1–5, 2013.
[5] Benjamin Loewe, Michael Chiang, Davide Marenduzzo, and M Cristina Marchetti. Solid-Liquid Transition of Deformable and Overlapping Active Particles. Physical Review Letters, 125(3):38003, 2020.
[6] C. A. Weber, T Hanke, J Deseigne, S L ́eonard, O Dauchot, E Frey, and H Chate. Long-Range Ordering of Vibrated Polar Disks. Physical Review Letters, 110:1–5, 2013.
[7] Hui Shun Kuan, Robert Blackwell, Loren E. Hough, Matthew A. Glaser, and M. D. Betterton. Hysteresis, reentrance, and glassy dynamics in sys- tems of self-propelled rods. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 92(6):1–6, 2015.
[8] Francesco Ginelli, Fernando Peruani, Markus B ̈ar, and Hugues Chat ́e. Large-scale collective properties of self-propelled rods. Physical Review Letters, 104(18):1–4, 2010.
[9] Simon Garcia, Edouard Hannezo, Jens Elgeti, Jean-Franc ̧ois Joanny, Pascal Silberzan, and Nir S. Gov. Physics of active jamming during collective cellular motion in a monolayer. Proceedings of the National Academy of Sciences, 112(50):15314–15319, 2015.
[10] Hugues Chat ́e, Francesco Ginelli, and Rau ́l Montagne. Simple model for active nematics: Quasi-long-range order and giant fluctuations. Physical Review Letters, 96(18):1–4, 2006.
[11] Samuel R. McCandlish, Aparna Baskaran, and Michael F. Hagan. Sponta- neous segregation of self-propelled particles with different motilities. Soft Matter, 8(8):2527–2534, 2012.
[12] Yingzi Yang, Vincent Marceau, and Gerhard Gompper. Swarm behavior of self-propelled rods and swimming flagella. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 82(3):1–13, 2010.
[13] Silke Henkes, Yaouen Fily, and M. Cristina Marchetti. Active jamming: Self-propelled soft particles at high density. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 84(4):84–87, 2011.
[14] K. R. Prathyusha, Silke Henkes, and Rastko Sknepnek. Dynamically gen- erated patterns in dense suspensions of active filaments. Physical Review E, 97(2):1–9, 2018.
[15] Sebastian Weitz, Andreas Deutsch, and Fernando Peruani. Self-propelled rods exhibit a phase-separated state characterized by the presence of active stresses and the ejection of polar clusters. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 92(1):1–9, 2015.
[16] Yaouen Fily and M Cristina Marchetti. Athermal phase separation of self- propelled particles with no alignment. Physical Review Letters, 108(23):1–5, 2012.
[17] Fernando Peruani, Andreas Deutsch, and Markus B ̈ar. Nonequilibrium clustering of self-propelled rods. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74(3):1–4, 2006.
[18] Robin Van Damme, Jeroen Rodenburg, Ren ́e Van Roij, and Marjolein Di- jkstra. Interparticle torques suppress motility-induced phase separation for rodlike particles. Journal of Chemical Physics, 150(16), 2019.
[19] Yao-kuan Wang, Chien-jung Lo, and Wei-chang Lo. Formation of spiral coils among self-propelled chains. Physical Review E, 98:1–10, 2018.
[20] Thomas B ̈ottcher, Hunter L. Elliott, and Jon Clardy. Dynamics of snake-like swarming behavior of vibrio alginolyticus. Biophysical Journal, 110(4):981–992, 2016.
[21] Bella Ilkanaiv, Daniel B. Kearns, Gil Ariel, and Avraham Beer. Effect of Cell Aspect Ratio on Swarming Bacteria. Physical Review Letters, 118(15):1–5, 2017.
[22] Andrea J. Liu and Sidney R. Nagel. The Jamming Transition and the Marginally Jammed Solid. Annual Review of Condensed Matter Physics, 1(1):347–369, 2010.
[23] Aleksandar Donev, Joshua Burton, Frank H. Stillinger, and Salvatore Torquato. Tetratic order in the phase behavior of a hard-rectangle system. Physical Review B - Condensed Matter and Materials Physics, 73(5):1–11, 2006.
[24] A Jaster. Computer simulations of the two-dimensional melting transition using hard disks. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 59(3):2594–2602, 1999.
[25] Kun Chen. Melting in Two-Dimensional Lennard-Jones Systems: Obser- vation ofa Metastable Hexatic Phase. Physical Review Letters, 74(20):4, 1995.
[26] Sebastian C. Kapfer and Werner Krauth. Two-dimensional melting: From liquid-hexatic coexistence to continuous transitions. Physical Review Let- ters, 114(3):1–5, 2015.
[27] Christoph A Weber, Christopher Bock, and Erwin Frey. Defect-Mediated Phase Transitions in Active Soft Matter. Physical Review Letters, 112:1–5, 2014.
[28] Siddharth Paliwal and Marjolein Dijkstra. The role of topological defects in the two-stage melting and elastic behavior of active Brownian particles. arXiv, 2(1):12013, 2019.
[29] C Durniak and D Samsonov. Plastic Deformations in Complex Plasmas. Physical Review Letters, 106:1–5, 2011.
[30] Dapeng Bi, Xingbo Yang, M. Cristina Marchetti, and M. Lisa Manning. Motility-driven glass and jamming transitions in biological tissues. Physical Review X, 6(2):1–13, 2016.
[31] Marc Durand and Julien Heu. Thermally Driven Order-Disorder Transi- tion in Two-Dimensional Soft Cellular Systems. Physical Review Letters, 123(18):188001, 2019.
[32] Xia Qing Shi and Yu Qiang Ma. Topological structure dynamics revealing collective evolution in active nematics. Nature Communications, 4:1–9, 2013.
[33] Nitin Kumar, Rui Zhang, Juan J. de Pablo, and Margaret L. Gardel. Tun- able structure and dynamics of active liquid crystals. Science Advances, 4(10):1–13, 2018.
[34] Masoud Abkenar, Kristian Marx, Thorsten Auth, and Gerhard Gomp- per. Collective behavior of penetrable self-propelled rods in two dimen- sions. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 88(6):1–11, 2013.
[35] Yen Shuo Su and Lin I. Cooling the two-dimensional short spherocylinder liquid to the tetratic phase: Heterogeneous dynamics with one-way cou- pling between rotational and translational hopping. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 92(1):1–6, 2015.