跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳美伶
Mei-Ling Chen
論文名稱: 風吹落物之軌跡預測模式與實驗研究
A model and experiments of trajectories to wind-borne debris
指導教授: 朱佳仁
Chia-Ren Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 77
中文關鍵詞: 風吹落物體風洞實驗數值模式陣風
外文關鍵詞: Wind tunnel experiment, Numerical simulation, Wind-borne debris
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 風吹落的物體,譬如樹枝、招牌、屋頂的瓦片被強風吹落後,往往會對下風處的建築物、行人或車輛造成極大的危險。尤其是在風災頻繁的台灣,這一類的災害時有所聞,值得深入的研究。本研究擬以風洞實驗加上數位攝影機,在不同流況下,例如穩態流以及陣風流場下實際量測各種形狀的物體,例如球體、正方塊體和長方塊體等被風吹落的軌跡。本研究並建立一個數值模式以二維的四階Runge-Kutta法來求取每個時間的水平和垂直速度,再進而推求物體水平和垂直方向之位置,模擬物體在風中飛行的軌跡,以實驗結果比較及驗證模式。比較發現,本研究之模式預測物體墜落的落點,誤差皆在10%以內,得以證明本模式之適用性。再更進一步發展模式,以模擬紊流流況下之物體受風吹落的軌跡。研究結果將可增進吾人對風吹落物體行為的瞭解,並可降低風災所帶來的危害。


    Impacts by wind-borne debris are a major source of damage in severe wind storms such as typhoons. Debris that can be projected as missiles include branches from tree, roof tiling, as well as items removed by strong wind from building cladding and structure. These items could penetrate the walls and windows of downwind buildings and cause human life. This study used wind tunnel experiment and numerical simulation to study the trajectory and velocity of wind-borne objects, such as sphere, cube and rectangular plate, in uniform flow and gusty flow. The numerical model used a two-dimensional fourth-order Runge-Kutta scheme to solve the horizontal and vertical velocities. The results of numerical simulation and wind tunnel experiment show good agreement. The numerical model was then used to simulate the trajectory and impact velocity of wind-borne objects in turbulent flow.

    中文摘要 I Abstract II 目錄 III 表目錄 VI 圖目錄 VII 符號表 X 第一章 導論 1.1 研究動機 1 1.2 研究目的 1 1.3 大綱 2 第二章 理論基礎與文獻回顧 2.1 流體的作用力 4 2.2 陣風 6 2.3 前人文獻 7 第三章 模式分析與實驗方法 3.1 實驗設備 18 3.1.1 大型環境風洞 18 3.1.2 陣風產生器 19 3.1.3 物體釋放器 20 3.1.4 風速量測 20 3.1.5 影像擷取系統 22 3.1.6 物體形狀與規格 22 3.2 實驗方法與步驟 22 3.2.1 實驗步驟 22 3.2.2 DV影像擷取 23 3.2.3 判斷圖檔中物體中心位置 24 3.2.4 影像處理程式分析過程 25 3.3 模式基本假設 25 3.4 風吹落物之軌跡方程式 26 3.4.1 初始條件 26 3.4.2 球體 26 3.4.3 正方塊體 29 3.4.4 長方塊體 30 第四章 結果與討論 4.1 球體 45 4.1.1 球體運動軌跡圖 46 4.1.2 球體最後落點位置 46 4.2 正方塊體 47 4.2.1 正方塊體運動軌跡圖 47 4.2.2 正方塊體最後落點位置 48 4.3 長方塊體 48 4.3.1 長方塊體運動軌跡圖 48 4.3.2 長方塊體最後落點位置 49 4.4 參數特性分析 49 4.4.1 阻力係數的影響 49 4.4.2 投影面積的影響 50 4.4.3 水平垂向力比 50 4.4.4 紊流的影響 50 4.5 陣風的結果分析 52 第五章 結論與建議 5.1 結論 73 5.2 建議 74 參考文獻 75

    1. 廖慶隆 (1996) “數值分析與工程應用程式”, 松崗科技股份有限公司
    2. 林聰悟、林佳慧 (1997) “數值方法與程式”, 圖文技術服務有限公司
    3. 許盈松、周湘俊、楊錦釧 (2003) “風場中顆粒躍移研究”, 中國土木水利工程學刊, Vol.15, No.4, pp.679-691
    4. Burden, R.L. and Faires, J.D. (1993) “Numerical Analysis”, PWS Publishing Company, Boston
    5. Capart, H., Young, D.L. and Zech. Y. (2002) “Voronoï imaging methods for the measurement of granular flows”, Exp. Fluids, Vol.32, pp.121-135
    6. Chapra, S.C. and Canale, R.P. (1998) “Numerical Methods for Engineers”, WCB McGraw-Hill, Boston
    7. Clift, R., Grace, J.R. and Weber, M.E. (1978) “Bubbles, drops and particles”, Academic Press, New York
    8. Frederick, W.R. and William, W.W. (1971) “Some experimental results on sphere and disk drag”, AIAA Journal, Vol. 9, No. 2, pp. 285-291
    9. Foucaut, J.M. and Stanislas, M. (1997) “Experimental study of saltating particle trajectories”, Experiments in Fluids, Vol. 22, pp. 321-326
    10. Hoerner, S.F. (1977) “Fluid-Dynamic Drag:Practical information on aerodynamic drag and hydrodynamic resistance”, Midland Park, N.J.
    11. Holmes, J.D. (2003) “The mechanics and aerodynamics of windborne debris”, Tamsui, Taipei County, Taiwan, November 17-18, pp. 37-46
    12. Holmes, J.D. (2004) “Trajectories of spheres in strong winds with application to wind-borne debris”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 92, pp. 9-22
    13. Kobayashi, H., Hatanaka, A. and Ueda, T. (1994) “Active simulation of time histories of strong wind gust in a wind tunnel”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 53, pp. 315-330
    14. Lee, A.J.H. (1974) “A general study of tornado-generated missiles”, Nuclear Engineering and Design, Vol. 30, pp. 418-433
    15. Lee, A.J.H. (1975) “Trajectory of tornado missiles and the design parameters”, Proceedings of the Fifth Asia-Pacific Conference on Wind Engineering, Kyoto, Japan, October 21-24
    16. McDonald, J.R., Mehta, K.C. and Minor, J.E. (1974) “Tornado-resistant design of nuclear power-plant structures”, Nuclear Safety, Vol.15, pp. 432-439
    17. Minor, J.E. (1994) “Windborne debris and the building envelope”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 53, pp. 207-227
    18. Roberson, J.A., Crowe, C.T. and Elger, D.F. (1997) “Engineering Fluid Mechanics”, John Wiley & Sons, Inc., New York
    19. Sakamoto, H. (1985) “Aerodynamic forces acting on a rectangular prism placed vertically in a turbulent boundary layer”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 18, pp. 131-151
    20. Seinfeld, J.H. (1986) “Atmospheric Chemistry and Physics of Air Pollution”, Wiley-Interscience publication., Canada
    21. Tachikawa, M. (1983) “Trajectories of flat plates in uniform flow with application to wind-generated missiles”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 14, pp. 443-453
    22. Tachikawa, M. (1988) “A method for estimating the distribution range of trajectories of windborne missiles”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 29, pp. 175-184
    23. Twisdale, L.A., Dunn, W.L. and Davis, T.L. (1979) “Tornado missile transport analysis”, Nuclear Engineering and Design, Vol. 51, pp. 295-308
    24. Wills, J.A.B., Lee, B.E. and Wyatt, T.A. (2002) “A model of wind-borne debris damage”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, pp. 555-565
    25. Young, D.F., Munson, B.R. and Okiishi, T.H. (1996) “A Brief Introduction to Fluid Mechanics”, John Wiley & Sons, Inc., New York

    QR CODE
    :::