跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許至勇
Chih-Yung Hsu
論文名稱: 三角不等式與Jensen不等式之精化
Refinements of triangle inequality and Jensen’s inequality
指導教授: 蕭勝彥
Sen-Yen Shaw
高華隆
Hwa-Long Gau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 95
語文別: 英文
論文頁數: 19
中文關鍵詞: 三角不等式
外文關鍵詞: triangle inequality, Jensen’s inequality
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們對於一個在Banach空間中的可積分向量值函數,證明了此函數具有 sharp triangle inequality 並且也證明了其三角不等式的reverse inequality, 這之中亦涵蓋了對於 n 個元素的特例,此特例是由 Kato 等學者所發表過的一個結果。此外我們也對一個在LP空間中的向量值函數,推廣了它另一種形式的三角不等式,我們的結果包含了對於兩個元素的特例。另外關於一個改良過的Jensen’s inequality 我們亦討論了其一些相關的性質。


    In this thesis, we prove a sharp triangle inequality and its reverse inequality for strongly integrable functions with values in a Banach space X. This contains as a special case a recent result of Kato et al on sharp triangle inequality for n elements. We also discuss a generalized triangle inequality for Lp functions with values in X. It contains as a special case the triangle inequality of the second kind for two elements, which is implied by the Euler-Lagrange type identity. Besides, some properties related to a refined Jensen’s inequality are observed.

    0. Abstract 1 1. Introduction 2 2. Sharp triangle inequality and it’s reverse for functions 4 3. Refined Jensen’s inequality and related properties 14 4. Generalization of the triangle inequality of the second kind 16 5. References 19

    [1] N. Dunford, J. T. Schwartz, Linear Operators, Part 1, Intersince Publishers,
    Inc., New York, 1957.
    [2] M. Kato, K.-S. Saito, and T. Tamura, Sharp triangle inequality and it’s
    reverse in Banach space, Math. Inequal. Appl., 10 (2007), 451-460.
    [3] J. M. Rassias, Soultions of the Ulam stability problem for Euler-Langrage
    quadratic mappings. J. Math. Anal. 220 (1998), 613-639.
    [4] J. Rooin, Some aspects of convex functions and their applications, J. Inequal.
    Pure and Appl., 2 (2001), Art. 4.
    [5] J. Rooin, A refinement of Jensen’s inequality, J. Inequal. Pure and Appl., 6
    (2005), Art. 38.
    [6] H. L. Royden, Real Analysis, 3rd ed., Prentice Hall, New Jersey, 1989.
    [7] Sin-Ei Takahasi, J. M. Rassias, S. Saitoh, and Y. Takahashi, Refined generalizations
    of the triangle inequality on Banach space, preprint.

    QR CODE
    :::