跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉家榕
Chia-Jung Yeh
論文名稱: 多孔矽沿蝕刻方向的光學性質探討
Study for optical properties of porous silicon along etching direction
指導教授: 鄭劭家
Chao-Chia Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 85
中文關鍵詞: 光致發光拉曼光譜多孔矽
外文關鍵詞: PL, Raman, porous silicon
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽晶藉由電化學蝕刻的方式形成了柱狀的多孔矽結構,而在蝕刻的過程中會出現奈米尺度的矽晶粒,這些矽奈米晶粒會引發量子侷限效應(Quantum confinement effect),這會讓矽的光學性質表現會發生很大的不同。在此論文中,我們將探討多孔矽結構在不同蝕刻深度位置的光激發螢光光譜和拉曼散射光譜,並嘗試對光譜的結果進行更深入的探討。
    在拉曼光譜上,矽晶和多孔矽的拉曼訊號有所不同,多孔矽的拉曼訊號會出現偏移、不對稱和全寬半高變寬的情況,我們認為這是源自於矽奈米晶粒的影響。在論文中透過3D phonon confinement model針對實驗結果中拉曼訊號的結果擬合出多孔矽的矽奈米晶粒大小。在量子侷限效應的影響下,光激螢光光譜也可以來判斷矽奈米晶粒的大小。本論文中,我們在同一試片中會選擇七個不同的位置,並在各個位置對不同蝕刻深度進行光譜測量,透過光譜結果,可以進一步判斷多孔矽的蝕刻深度。也可以得知多孔矽在不同蝕刻深度位置的光譜結果,並利用這些結果判斷矽奈米晶粒大小和結晶品質。此論文使用了三片以不同蝕刻電流上限製成的多孔矽試片,並依據光譜結果,來判斷蝕刻電流大小對多孔矽光性的影響。


    Porous silicon structures are fabricated by electrochemical etching of silicon crystals. During the etching process, nanoscale silicon grains emerge, inducing the quantum confinement effect. This effect leads to significant alterations in the optical properties of silicon. In this work, we will investigate the photoluminescence and Raman scattering spectra of porous silicon structures at different etching depths. Additionally, we will attempt to provide more analysis of the spectral results.
    In the Raman spectra, there are discernible differences between silicon crystals and porous silicon. The Raman signal of porous silicon exhibits shifts, asymmetry, and broadening of full-width at half-maximum (FWHM), which may also arise from the influence of quantum confinement effect. In our paper, we employ a 3D phonon confinement model to fit the size of silicon nano-crystals in porous silicon based on our experimental results of the Raman signal. Photoluminescence spectra can also be utilized to determine the size of silicon nano-crystals. In this work, we select seven different positions on the same sample and conduct spectral measurements at various etching depths at each position. Through spectral results, we can further determine the etching depth of the porous silicon. Additionally, we can obtain the spectral results of porous silicon at different etching depths and use these results to determine the size and crystalline quality of silicon nanocrystals. Three samples of porous silicon were fabricated using different etching current limits, and based on the spectral results, we assess the influence of etching current magnitude on the optical properties of porous silicon.

    摘要.............................................................................................................i Abstract......................................................................................................ii 致謝...........................................................................................................iv 目錄...........................................................................................................vi 圖目錄.....................................................................................................viii 第一章 簡介 1 第二章 基本原理 3 2-1 聲子色散關係圖 3 2-1.1 矽晶的晶格特性、聲子模態與光學特性 6 2-2 多孔矽的形成與發光理論 10 第三章 實驗樣品、架設與實驗方法 15 3-1 實驗樣品介紹 15 3-2 光激螢光光譜、拉曼光譜實驗架設 19 3-3 實驗方法 21 第四章 實驗結果與討論 23 4-1 多孔矽拉曼光譜 24 4-2 多孔矽光激發螢光光譜 25 4-3 多孔矽的蝕刻深度測量 28 4-4 多孔矽的蝕刻均勻性 32 4-5 多孔矽的奈米晶粒 60 第五章 結論 65 參考文獻 67

    參考文獻

    [1] J.A. Uhlir, "Electrolytic shaping of germanium and silicon", Bell System Technical Journal. 35, 333 (1956)
    [2] D.R. Turner, "On the mechanism of chemically etching germanium and silicon", Journal of the electrochemical Society. 107, 810 (1960)
    [3] L.T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers", Applied physics letters. 57, 1046 (1990)
    [4] H.D. Fuchs, "Porous silicon and siloxene: Vibrational and structural properties", Physical Review B. 48, 8172 (1993)
    [5] A.G. Cullis, L.T. Canham, and P.D.J. Calcott, "The structural and luminescence properties of porous silicon", Journal of applied physics. 82, 909 (1997)
    [6] Misra. Prasanta. "Normal modes of a one-dimensional chain with a basis", Physics of condensed matter. Academic Press, 44 (2011)
    [7] Sunada. Toshikazu, "Lecture on topological crystallography", Japanese Journal of Mathematics. 7, 1 (2012)
    [8] F.H. Pollak, and T. Raphael, "Raman characterization of semiconductors revisited", Spectroscopic Characterization Techniques for Semiconductor Technology I. Vol. 452. SPIE (1984)
    [9] Y.K. Park, and Suk-Ki Min, "First-Principles Calculation of the Phonon Dispersion Curves of Silicon", Journal of the Korean Physical Society. 31, 267 (1997)
    [10] Jia-Chuan Lin , Kuo- Min Huang, "Microstructure Analysis and Photoelectronic Properties of Porous Silicon", Hua Kang Journal of Engineering Chinese Culture University vol.21, 137 (2007)
    [11] V. Lehmann, "Electrochemistry of silicon: instrumentation, science, materials and applications" (2002)
    [12] R.W. Fathauer, "Visible luminescence from silicon wafers subjected to stain etches", Applied Physics Letters. 60, 995 (1992)
    [13] Z.Y. Xu, M. Gal, and M. Gross. "Photoluminescence studies on porous silicon", Applied physics letters. 60, 1375 (1992)
    [14] Kanemitsu. Yoshihiko, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites", Physical review B. 48, 2827 (1993)
    [15] Takagahara. Toshihide, and Kyozaburo Takeda, "Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials", Physical Review B. 46, 15578 (1992)
    [16] L. Canham, "Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures", Faraday Discussions. 222, 10 (2020)
    [17] Y. Yu, "Size-dependent photoluminescence efficiency of silicon nanocrystal quantum dots", The Journal of Physical Chemistry C. 121, 23240 (2017)
    [18] R. Tsu, H. Shen, and M. Dutta. "Correlation of Raman and photoluminescence spectra of porous silicon", Applied physics letters. 60, 112 (1992)
    [19] M.V. Wolkin, "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen", Physical review letters. 82, 197 (1999)
    [20] Wei. Wensheng, and Xunlei Yan. "Dependence of solar cell performance on Si: H nanostructure", Applied Physics A. 97, 895 (2009)
    [21] Li. Bibo, Dapeng Yu, and Shu-Lin Zhang. "Raman spectral study of silicon nanowires", Physical Review B. 59, 1645 (1999)
    [22] H. Richter, Z. P. Wang, and L. Ley. "The one phonon Raman spectrum in microcrystalline silicon", Solid State Communications. 39, 625 (1981)
    [23] I.H. Campbell, and Ph M. Fauchet. "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors", Solid State Communications. 58, 739 (1986)
    [24] Y. Duan, J.F. Kong, and W.Z. Shen. "Raman investigation of silicon nanocrystals: quantum confinement and laser‐induced thermal effects", Journal of Raman Spectroscopy. 43, 756 (2012)
    [25] F. Ureña, O,H, Sarah, and R. Jean-Pierre, "Raman measurements of uniaxial strain in silicon nanostructures", Journal of Applied Physics. 114 (2013)
    [26] J. Munguía, "Strain dependence of indirect band gap for strained silicon on insulator wafers", Applied Physics Letters. 93(2008)

    QR CODE
    :::