跳到主要內容

簡易檢索 / 詳目顯示

研究生: 褚建榮
Chien-Jung Chu
論文名稱: 二價單電解質水溶液之個別離子活性係數
Measurement and Correlation of the Individual Ionic Activity Coefficients for the 2:1 Type of Aqueous Solutions of Single Electrolytes.
指導教授: 李亮三
Liang-Sun Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 56
中文關鍵詞: 滲透壓係數活性係數電解質溶液
外文關鍵詞: activity coefficient, osmotic coefficient, electrolyte solution
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究目的是以實驗方法量測CaCl2、MgCl2及BaCl2
    2:1單電解質水溶液在溫度298.15 K下、不同濃度的個別離子活性係數;並且量測CaCl2單電解質水溶液在不同溫度下、不同濃度的個別離子活性係數。因為缺乏鎂及鋇離子選擇性電極,所以本實驗使用氯離子選擇性電極來量測電動勢,以無因次電位法來計算Cl-的活性係數,接著使用平均離子活性係數之文獻值,計算出Ca2+、Mg2+及Ba2+的活性係數。
    實驗結果顯示,個別離子活性係數不僅與濃度、溫度有關,而且與其相對離子也有很大的關係。在溫度效應下,固定濃度的單電解質水溶液其離子活性係數隨著溫度的升高而減小。在298.15 K時,相對離子皆為Cl-的2:1單電解質水溶液,陽離子活性係數的大小順序依次為Mg2+>Ca2+>Ba2+,且其相對Cl-活性係數皆不相同。
    把個別離子活性係數以Khoshkbarchi-Vera方程式及雙離子參數離子活性係數模式(two-ionic-parameter approach)來關聯,均有不錯的結果。最後,使用雙離子參數離子活性係數模式關聯數據所得到的參數,計算2:1單電解質水溶液的滲透壓係數,並與文獻值作比較,其平均相對誤差(AARD)小於2﹪。


    Abstract
    In this study, the ionic activity coefficients of Ca2+, Mg2+, Ba2+, and Cl- were determined. The activity coefficients of Ca2+ and Cl- were measured with individual ion selective electrode (ISE). Due to the lack of ion selective electrode of magnesium and barium, the activity coefficients of these ions were calculated by using the literature data of the mean activity coefficients of the salts of these anions.
    The experimental results show that the individual ion activity coefficients depend on concentration, temperature and the nature of its counterion. The ionic activity coefficient in aqueous solution decreases with increasing temperature at constant concerntration. The activity coefficient of the cation in the presence of Cl- decreases in the order of: Mg2+>Ca2+>Ba2+.
    The Khoshkbarchi-Vera equation and the two-ionic-parameter approach were used to correlate the the individual ion activity coefficients with good accuracy. Finally, the approaching and solvation parameters of two-ionic-parameter approach were used to calculate the osmotic coefficient for these 2:1 electrolytes in aqueous solutions. The average absolute relative deviations (AARD) of the osmotic coefficient are <2﹪.

    目 錄 中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 圖目錄 Ⅵ 表目錄 Ⅷ 符號說明 Ⅸ 第一章 緒論 1 第二章 文獻回顧 3 2-1 電解質溶液個別離子活性係數相關文獻之回顧 3 2-2 電解質溶液平均活性係數模式相關文獻之回顧 5 第三章 理論說明 8 3-1 電解質溶液之熱力學基本性質 8 3-1-1離子強度 8 3-1-2電解質之活性係數 8 3-2 Güntelberg方程式 9 3-3 水合理論 10 3-4 電化學與熱力學之關係 12 3-4-1電化學電池之作功 12 3-4-2能士特方程式(Nernst Equation) 12 3-5 個別離子活性係數之理論計算 13 3-6 個別離子活性係數實驗數據之關聯 17 3-7 電解質水溶液滲透壓係數之計算 19 第四章 實驗方法 22  前言 22 4-1 實驗裝置 22 4-2 實驗藥品 22 4-3 實驗設備 23 4-4 實驗步驟 23 4-4-1電極的校正 23 4-4-2量測電化學電池之電動勢 24 第五章 實驗結果與討論 26 5-1 實驗結果 26 5-2 討論 26 第六章 結論與未來展望 29 參考文獻 31 圖 34 表 44 附錄 55

    參考文獻
    Bates, R. G., Determination of pH Theory and Practice, 2nd ed., John Wiley, New York (1965).
    Bates, R. G.; Staples, B. R.; Robinson, R. A., Ionic Hydration and Single Ion Activity in Unassociated Chlorides at High Ionic Strengths. Anal. Chem. 42 (1970) 867-871.
    Bogaerts, W. F.; Van Haute, A. A., Determination of Activity Coefficients for KCl at Elevated Temperatures. J. Electrochem. Soc. 131 (1984) 68-72.
    Chen, C. C.; Britt, H. I.; Boston, J. F.; Evans, L. B., Local Composition Model for Excess Gibbs Energy of Electrolytes Systems. AIChE J. 28 (1982) 588-595.
    Chen, C. C.; Evans, L. B., A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems. AIChE J. 32 (1986) 444-454.
    Khoshkbarchi, M. K.; Vera, J. H., Measurement and Correlation of Ion Activity in Aqueous Single Electrolyte Solutions. AIChE J. 42 (1996) 249-258.
    Kielland, J., Individual Activity Coefficients of Ions in Aqueous Solutions. J. Am. Chem. Soc. 59 (1937) 1675-1938.
    Lewis, G. N.; Randall, M., Thermodynamics, 2nd ed. rev. by Pitzer, K. S.; Brewer, L., McGraw-Hill, New York (1961).
    Lin, C. L.; Lee, L. S., A Two-Ionic-Parameter Approach for Ion Activity Coefficients of Aqueous Electrolyte Solutions. Fluid Phase Equilibria. 205 (2003) 69-88.
    Lin, C. L.; Lee, L. S.; Tseng, H. C., Thermodynamic Behavior of Electrolyte Solutions : Part I. Activity Coefficients and Osmotic Coefficients of Binary Systems. Fluid Phase Equilibria. 90 (1993) 57-79.
    Lin, C. L.; Lee, L. S.; Tseng, H. C., Thermodynamic Behavior of Electrolyte Solutions : Part II. Prediction of Vapor-Liquid Equilibria for Mixed-Solvent Electrolyte Systems. Fluid Phase Equilibria. 90 (1993) 81-98.
    Lin, C. L.; Tseng, H. C.; Lee, L. S., A Three-Characteristic-Parameter Correlation Model for Strong Electrolyte Solutions. Fluid Phase Equilibria. 152 (1998) 169-185.
    López-Pérez, G.; González-Arjona, D.; Molero, M., Estimation of Activity Coefficients at Different Temperatures by Using the Mean Spherical Approximation. J. Electroanal. Chem. 480 (2000) 9-17.
    Pitzer, K. S., Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations. J. Phys. Chem. 77 (1973) 268-277.
    Pitzer, K. S.; Mayorga, G., Thermodynamics of Electrolytes. II. Activity and Osmotic Coefficients for Strong Electrolytes with One or Both Ions Univalent. J. Phys. Chem. 77 (1973) 2300-2307.
    Rabie, H. R.; Wilczek-Vera, G.; Vera, J. H., Activities of Individual Ions From Infinite Dilution to Saturated Solutions. J. Sol. Chem. 28 (1999) 885-913.
    Robinson, R. A.; Stokes, R. H. Electrolyte Solutions. 2nd ed., Academic Press, New York (1959).
    Rodil, E.; Vera, J. H., Individual Activity Coefficients of Chloride Ions in Aqueous Solutions of MgCl2, CaCl2 and BaCl2 at 298.2 K. Fluid Phase Equilibria. 187-188 (2001) 15-27.
    Shatkay, A.; Lerman, A., Individual Activities of Sodium and Chloride in Aqueous Solutions of Sodium Chloride. Anal. Chem. 41 (1969) 514-517.
    Taghikhani, V.; Modarress, H.; Khoshkbarchi, M. K.; Vera, J. H., Application of the MSA to the Modeling of the Activity Coefficients of Individual ions. Fluid Phase Equilibria. 167 (2000) 161-171.
    Taghikhani, V.; Modarress, H.; Vera, J. H., Individual Anionic Activity in Aqueous Electrolyte Solutions of LiCl and LiBr. Fluid Phase Equilibria. 166 (1999) 67-77.
    Taghikhani, V.; Modarress, H.; Vera, J. H., Measurement and Correlation of the Individual Ionic Activity Coefficients of Aqueous Electrolyte Solutions of KF, NaF and KBr. Can. J. Chem. Eng. 78 (2000) 175-181.
    Tasaka, M.; Kiyono, R.; Taniguchi, A., Experimental Evaluation of Single Ion Activities. J. Membr. Sci. 185 (2001) 245-251.
    Van der Stegen, J. H. G.; Weerdenburg, H.; Van der Veen, A. J.; Hogendoorn, J. A.; Versteeg, G. F., Application of the Pitzer Model for the Estimation of Activity Coefficients of Electrolytes in Ion Selective Membranes. Fluid Phase Equilibria. 157 (1999) 181-196.
    Zaytsev, I. D.; Aseyev, G. G., Properties of Aqueous Solutions of Electrolytes, CRC Press, Boca Raton, FL (1992).
    熊楚強, 王月, 電化學, 文京圖書有限公司, 台北 (1997).
    陳贊名, 單電解質離子活性係數與溫度的關係, 國立中央大學化學工程所碩士論文 (2000).
    蔡坤明, 單電解質水溶液離子活性係數之探討, 國立中央大學化學工程所碩士論文 (2001).

    QR CODE
    :::