| 研究生: |
洪秀棻 Hsiu-Fen Hong |
|---|---|
| 論文名稱: |
高速公路出口匝道回堵紓解之研究 A study on discharging spillback on freeway off-ramp using signal control |
| 指導教授: |
吳健生
Jiann-Sheng Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 出口匝道 、車流回堵 、衝擊波 、號誌控制 |
| 外文關鍵詞: | off-ramp, queue spillback, shock waves, signal control |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一直以來,國道1號為西部走廊的交通大動脈,因此在上、下午尖峰時段,進入及離開高速公路主線的車流增加,而導致在都會區之出口匝道產生壅塞。當車流回堵至主線,不僅影響主線車流行駛速度更是對於主線車流產生安全疑慮。造成出口匝道壅塞之原因為到達車流量大於紓解之車流量,一旦無法即時紓解等候車隊,就會造成車輛回堵,且回堵長度超過減速車道長度時,便會佔據主線外車道。因此,本研究希望能提出一個適應性的號誌控制方法,來改善出口匝道回堵至高速公路主線之問題。
本研究針對國道1號林口B北上出口匝道為研究對象,應用衝擊波理論建立出一個符合此出口匝道之回堵模式,透過觸動控制之方式,找出車輛偵測器設置位置並探討延長不同綠燈時間情況下之結果。根據結果顯示,最遠可將車輛偵測器設置於停止線上游210公尺,而最近距離為100公尺,其中以控制點210公尺,延長35秒綠燈時間其出口匝道綠燈總延長時間達最小值為525秒;若為降低對於其他方向車流之衝擊,則可選擇控制點150公尺,延長15秒綠燈時間其出口匝道綠燈總延長時間為540秒。
For a long time, National Freeway No. 1 is the traffic artery of the Western Corridor. Therefore, during the peak hours, the traffic entering and leaving the mainline of the freeway increased, while the off-ramp in the metropolitan area caused congestion. When the traffic flows spillback to the freeway mainline, it not only affects the speed of the traffic, but also has safety concerns for the main traffic. Congestion on off-ramp often propagates the traffic queue to the freeway mainline and occupy the shoulder lane. Therefore, this study proposes an adaptive signal control to improve the problem of off-ramp spillback to the mainline.
This study uses Linkou B north off-ramp of National Freeway No. 1 as the research object, using shock wave theory to establish a spillback model that meets this off-ramp, and find out the location of the vehicle detector by actuated control and analysis the results of extending different the green time. According to the results, the vehicle detector can be set up to 210 meters upstream of the stop line, and the nearest distance is 100 meters, of which set up to 210 meters, extend the green time for 35 seconds, and the minimum value of the total extend green time at off-ramp is 525 seconds. In order to reduce the impact on the traffic flow in other directions, can be selected to 150 meters, and the green time of the total extend green time at off-ramp is 540 seconds.
1. 交通部,路側設施即時交通資訊發布標準格式,民國100年。
2. 交通部,高速公路局交通資料庫。2019年6月11日,取自http://tisvcloud.freeway.gov.tw/
3. 林豐博等,2011年臺灣公路容量手冊,交通部運輸研究所,民國100年。
4. 陳惠國等,交通工程,二版,五南圖書出版股份有限公司,民國106年。
5. 曾明德,「雷達車輛偵測及衝擊波技術應用於緊鄰路口號誌控制之研究」,國立交通大學,博士論文,民國101年。
6. An, C., Wu, Y. J., Xia, J., & Huang, W. (2018). Real-time queue length estimation using event-based advance detector data. Journal of Intelligent Transportation Systems, 22(4), 277-290.
7. Ban, X. J., Hao, P., & Sun, Z. (2011). Real time queue length estimation for signalized intersections using travel times from mobile sensors. Transportation Research Part C: Emerging Technologies, 19(6), 1133-1156.
8. Günther, G., Coeymans, J. E., Muñoz, J. C., & Herrera, J. C. (2012). Mitigating freeway off-ramp congestion: A surface streets coordinated approach. Transportation research part C: emerging technologies, 20(1), 112-125.
9. Jiang, Y., & Guan, N. (2013). Priority Signal Control Methods of Auxiliary Road of Urban Expressway Off-Ramp. In Fourth International Conference on Transportation EngineeringAmerican Society of Civil EngineersSouthwest Jiaotong UniversityChina Communications and Transportation AssociationMao Yisheng Science and Technology Education FoundationZhan Tianyou Development Foundation.
10. Lighthill, M. J., & Whitham, G. B. (1955). On kinematic waves II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229(1178), 317-345.
11. Li, Z., Chang, G. L., & Natarajan, S. (2009). Integrated off-ramp control model for freeway traffic management (No. 09-1457).
12. Liu, H. X., Wu, X., Ma, W., & Hu, H. (2009). Real-time queue length estimation for congested signalized intersections. Transportation research part C: emerging technologies, 17(4), 412-427.
13. Liang, Y., Wu, Z., Li, J., Li, F., & Wang, Y. (2018). Shockwave-Based Queue Length Estimation Method for Presignals for Bus Priority. Journal of Transportation Engineering, Part A: Systems, 144(9), 04018057.
14. May, A. D. (1990). Traffic flow fundamentals.
15. Ping, Y. I., Zongzhong, T. I. A. N., & Qiang, Z. H. A. O. (2008). Consistency of input-output model and shockwave analysis in queue and delay estimations. Journal of Transportation Systems Engineering and Information Technology, 8(6), 146-152.
16. Ramezani, M., & Geroliminis, N. (2015). Queue profile estimation in congested urban networks with probe data. Computer‐Aided Civil and Infrastructure Engineering, 30(6), 414-432.
17. Skabardonis, A., & Geroliminis, N. (2008). Real-time monitoring and control on signalized arterials. Journal of Intelligent Transportation Systems, 12(2), 64-74.
18. Shengchao, Y. I. N., Runmin, X. U., Zhang, Y., & Zhiheng, L. I. (2012). Signal Control Strategies for Bottleneck Area on Urban Expressway. Journal of Transportation Systems Engineering and Information Technology, 12(2), 27-33.
19. Spiliopoulou, A., Kontorinaki, M., Papamichail, I., & Papageorgiou, M. (2013, October). Real-time route diversion control at congested motorway off-ramp areas-Part I: User-optimum route guidance. In 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) (pp. 2119-2125). IEEE.
20. Wu, X., & Liu, H. X. (2011). A shockwave profile model for traffic flow on congested urban arterials. Transportation Research Part B: Methodological, 45(10), 1768-1786.
21. Yang, X., Cheng, Y., & Chang, G. L. (2018). Integration of adaptive signal control and freeway off-ramp priority control for commuting corridors. Transportation research part C: emerging technologies, 86, 328-345.