跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅玉燕
Yu-Yan Lo
論文名稱: 基於生醫文本擷取功能性層級之生物學表徵語言敘述:由主成分分析發想之K近鄰算法
Extracting Function-level Statements in Biological Expression Language from Biomedical Literature:A K Nearest Neighbor approach inspired by Principal Component Analysis
指導教授: 蔡宗翰
Tzong-Han Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 64
中文關鍵詞: 生醫文獻探勘生物學表徵語言機器學習主成分分析K近鄰算法
外文關鍵詞: Biomedical text mining, Biological Expression Language, Machine learning, Principal component analysis, K-nearest neighbor
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一直以來,瞭解生物體中的蛋白質訊息傳導路徑是生醫領域研究的主要目的之一,因為蛋白質訊息傳導路徑牽涉到許多生物體內的調控作用,不同調控作用的組合會形成不同的蛋白質訊號路徑,而這些訊號路徑之間具有關聯性,彼此相連成精密的訊息傳遞網路。近年來,基於生醫實驗技術的精進以及資訊交流的便利,生醫領域中的文獻數量大幅成長,對於生醫文本探勘技術的需求也逐漸增加。生物學表徵語言(Biological Expression Language, BEL)是一種描述生醫訊息傳導網絡的表示法,此語言不僅可以描述兩生醫實體(基因、蛋白質、化合物等)之間的正負回饋關係,更可以近一步的表示生醫實體的功能性層級資訊,例如:是否為複合物、是否為伴侶性蛋白或是扮演催化物角色等等。在相關研究中,最新的擷取功能性層級(function-level)之生物學表徵語言成績為30.5\%,而此擷取成果會影響之後自動化擷取生物學表徵語言之完整性。為了提升生物學表徵語言敘述完整性,我們提出了主成分分析發想之K近鄰算法來自動化識別功能性層級之生醫實體,並在實驗中提出了基於不平衡資料集之功能性層級之生醫實體分類法,比較支持向量機(SVM)實驗與主成分分析發想之K近鄰算法之結果優缺。在實驗結果中,使用主成分分析發想之K近鄰算法對於不平衡資料集分類的效果為佳,其分類成績可達到59.70\%。因此,我們期望透過此自動化識別功能性層級之生醫實體之方法,提升未來建構生醫訊息傳導網路之完整性,進而加快生醫學者醫藥研究之進程。


    Nowadays, understanding pathway is one of the main purpose of biomedical domains, because the biological pathway involves various regulation mechanisms. Many regulation mechanisms have being discovered and presented in biomedical literature, allowing life scientists to perceive the latest results. It also has being highly demanded within the scientific community in the text mining for biomedical researches. Biological Expression Language (BEL) is designed to capture relationships between the two biological entities, such as gene, protein and chemical in scientific literatures. This is can not only describe the positive/negative relationship between biomedical entities, but represent biomedical function-level information, such as complex abundance, chaperone protein, catalyst and so on. In related research, the latest performance of function-level classification is 30.5\%, and the performance will effect on the BEL full-statement performance. In order to enhance the integrity of the BEL full-statements, we proposed a K-nearest neighbor (KNN) approach inspired by Principal Component Analysis (PCA) to recognize the function-level terms automatically. In experimental results, combination of PCA and KNN has the higher performance than SVM-based method, and it can achieve F-score of 59.70\%. In conclusion, we hope that the higher performance of function-level classification can not only enhance the integrity of BEL full-statement, but help to construct complete biological networks and to accelerate the biomedical research processes for life scientists.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2 Literature Reviews . . . . . . . . . . . . . . . . . . . 9 2.1 Biomedical Text Mining for Pathway Event Extraction 9 2.2 Extraction of Function-Level Information in Biological Expression Language (BEL) . . . . . . . . . . . . . . 10 Chapter 3 Method . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Problem Statement of Function-Level Classification . . 14 3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . 14 3.2.1 Basic Features . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 BEL Term-Level Features . . . . . . . . . . . . . . . 16 3.2.3 Advanced Features . . . . . . . . . . . . . . . . . . . 17 3.3 System Flow of Proposed Method I . . . . . . . . . . 18 3.3.1 Support Vector Machine (SVM) . . . . . . . . . . . . 18 3.3.2 Solution of Imbalanced Data . . . . . . . . . . . . . . 23 3.3.3 Voting Mechanism . . . . . . . . . . . . . . . . . . . 24 iii 3.3.4 Post-Processing . . . . . . . . . . . . . . . . . . . . . 26 3.4 System Flow of Proposed Method II . . . . . . . . . . 27 3.4.1 One-Hot Vector Converter . . . . . . . . . . . . . . . 27 3.4.2 Principal Component Analysis (PCA) . . . . . . . . . 28 3.4.3 K-Nearst Neighbor (KNN) Classifier . . . . . . . . . . 31 Chapter 4 Experiment and Evaluation . . . . . . . . . . . . . . . 32 4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 Experimental Setting . . . . . . . . . . . . . . . . . . 32 4.2.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.2 The Proposed Method I . . . . . . . . . . . . . . . . . 33 4.2.3 The Proposed Method II . . . . . . . . . . . . . . . . 34 4.3 Evaluation Metric . . . . . . . . . . . . . . . . . . . . 35 4.4 Experimental Results . . . . . . . . . . . . . . . . . . 35 Chapter 5 Discussion . . . . . . . . . . . . . . . . . . . . . . . 41 Chapter 6 Biology Interpretation . . . . . . . . . . . . . . . . . 46 Chapter 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 48 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    [1] Shatkay, Hagit, and Ronen Feldman. Mining the biomedical literature in the
    genomic era: an overview. Journal of computational biology 10.6 (2003):
    821-855.
    [2] Zhu, F., et al., Biomedical text mining and its applications in cancer research.
    Journal of Biomedical Informatics, 2013. 46(2): p. 200-211.
    [3] Hucka, M., et al., The systems biology markup language (SBML): a medium
    for representation and exchange of biochemical network models. Bioinformatics,
    2003. 19(4): p. 524-531.
    [4] Demir, E., et al., The BioPAX community standard for pathway data sharing.
    Nature biotechnology, 2010. 28(9): p. 935-942.
    [5] Slater, T. and D. Song, Saved by the BEL: Ringing in a common language for
    the life sciences. Drug Discovery World, 2012: p. 75-80.
    [6] Fluck, J., et al., Track 4 Overview: Extraction of Causal Network Information
    in Biological Expression Language (BEL).
    [7] Elayavilli, R.K., M. Rastegar-Mojarad, and H. Liu. Adapting a rule-based
    relation extraction system for BioCreative V BEL task. in Proceedings of the
    fifth BioCreative challenge evaluation workshop. Sevilla, Spain. 2015.
    [8] Ravikumar, K. E., Kavishwar B. Wagholikar, and HONGFANG LIU. Towards
    pathway curation through literature mining–a case study using phar-
    mGKB. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.
    NIH Public Access, 2014.
    [9] Hewett, M., et al., PharmGKB: the pharmacogenetics knowledge base. Nucleic
    acids research, 2002. 30(1): p. 163-165.
    [10] Lai, P.-T., et al., NCU-IISR System for BioCreative BEL Task. 2011
    [11] Giménez, J. and L. Marquez, Fast and accurate part-of-speech tagging: The
    SVM approach revisited. Recent Advances in Natural Language Processing
    III, 2004: p. 153-162.
    [12] McCallum, A. and W. Li. Early results for named entity recognition with
    conditional random fields, feature induction and web-enhanced lexicons. in
    Proceedings of the seventh conference on Natural language learning at HLTNAACL
    2003-Volume 4. 2003. Association for Computational Linguistics.
    [13] Pang, B., L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification
    using machine learning techniques. in Proceedings of the ACL-02 conference
    on Empirical methods in natural language processing-Volume 10. 2002. Association
    for Computational Linguistics.
    [14] Ohta, T., et al., Overview of the pathway curation (PC) task of bioNLP shared
    task 2013. 2013.
    [15] Miyao, Y. and J.i. Tsujii, Feature forest models for probabilistic HPSG parsing.
    Computational Linguistics, 2008. 34(1): p. 35-80.
    [16] Sagae, K. and J.i. Tsujii. Dependency Parsing and Domain Adaptation with
    LR Models and Parser Ensembles. in EMNLP-CoNLL. 2007.
    [17] De Marneffe, M.-C., B. MacCartney, and C.D. Manning. Generating typed
    dependency parses from phrase structure parses. in Proceedings of LREC.
    2006.
    [18] Choi, M., et al. Integrating Coreference Resolution for BEL Statement Generation.
    in Proceedings of the fifth BioCreative challenge evaluatio workshop.
    Sevilla, Spain. 2015.
    [19] Elayavilli, R.K., M. Rastegar-Mojarad, and H. Liu. Adapting a rule-based
    relation extraction system for BioCreative V BEL task. in Proceedings of the
    fifth BioCreative challenge evaluation workshop. Sevilla, Spain. 2015.
    [20] Wei, C.-H., H.-Y. Kao, and Z. Lu, PubTator: a web-based text mining tool
    for assisting biocuration. Nucleic acids research, 2013: p. gkt441.
    [21] Nunes, T., et al., BeCAS: biomedical concept recognition services and visualization
    Bioinformatics, 2013: p. btt317.
    [22] Ravikumar, K., et al. An ensemble approach for chemical entity mention detection
    and indexing. in BioCreative Challenge Evaluation Workshop. 2013.
    [23] Hewett, M., et al., PharmGKB: the pharmacogenetics knowledge base. Nucleic
    acids research, 2002. 30(1): p. 163-165.
    [24] Lai, P.-T., et al., NCU-IISR System for BioCreative BEL Task. 2011.
    [25] Kim, J.-D., et al. Introduction to the bio-entity recognition task at JNLPBA. in
    Proceedings of the international joint workshop on natural language processing
    in biomedicine and its applications. 2004. Association for Computational
    Linguistics.
    [26] Ahmed, Shabbir, and Farzana Mithun. Word Stemming to Enhance Spam Filtering.
    CEAS. 2004.
    [27] Chen, Danqi, and Christopher D. Manning. A Fast and Accurate Dependency
    Parser using Neural Networks. EMNLP. 2014.
    [28] Chang, Chih-Chung, and Chih-Jen Lin. LIBSVM: a library for support vector
    machines. ACM Transactions on Intelligent Systems and Technology (TIST)
    2.3 (2011): 27.
    [29] James Mercer, Functions of Positive and Negative Type, and their Connection
    with the Theory of Integral Equations.Philosophical Transactions of the
    Royal Society of London, vol. 209, pp.415-446, January 1909.
    [30] Aizerman, M. A. and Braverman, E. A. and Rozonoer, L., Theoretical foundations
    of the potential function method in pattern recognition learning. Automation
    and Remote Control, vol. 25, pp.821-837,1964
    [31] Kivinen, Jyrki, and Manfred K. Warmuth. The perceptron algorithm vs. winnow:
    linear vs. logarithmic mistake bounds when few input variables are relevant.
    Proceedings of the eighth annual conference on Computational learning
    theory. ACM, 1995.
    [32] Cochran, William G. Sampling techniques. (1953).
    [33] Gundersen, H. J. G., and E. B. Jensen. The efficiency of systematic sampling
    in stereology and its prediction. Journal of microscopy 147.3 (1987): 229-
    263.
    [34] He, Haibo, and Edwardo A. Garcia. Learning from imbalanced data. IEEE
    Transactions on knowledge and data engineering 21.9 (2009): 1263-1284.
    [35] Liu, Tian-Yu. Easyensemble and feature selection for imbalance data
    sets. Bioinformatics, Systems Biology and Intelligent Computing, 2009.
    IJCBS’09. International Joint Conference on. IEEE, 2009.
    [36] Wold, Svante, Kim Esbensen, and Paul Geladi. Principal component analysis.
    Chemometrics and intelligent laboratory systems 2.1-3 (1987): 37-52.
    [37] Peterson, Leif E. K-nearest neighbor. Scholarpedia 4.2 (2009): 1883.
    [38] Kitamura, T., et al., Insulin-induced phosphorylation and activation of cyclic
    nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Molecular
    and cellular biology, 1999. 19(9): p. 6286-6296.

    QR CODE
    :::