跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃國倫
Kuo-lun Huang
論文名稱: 基於參數編碼之虛擬音源定位系統
An Object-based Audio Rendering System based on Parametric Coding
指導教授: 張寶基
Pao-chi chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 104
中文關鍵詞: 音源定位虛擬實境參數編碼音訊混音空間編碼訊號處理音訊編碼
外文關鍵詞: sound localization, virtual reality, parametric coding, audio renderer, spatial coding, audio coding, signal processing
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這個3D虛擬實境多媒體應用普及的時代裡,雖然應用上大多以3D視訊為主,但若加入3D音訊能讓使用者有更豐富的環境體驗感。因此本論文針對如第一人稱射擊遊戲 (First Person Shooter; FPS)等,這些3D的應用上提出一套基於物件資訊的音源定位混音系統 (Object-based Audio Rendering System; OARS),令使用者能夠辨別靜態物件的音源位置與動態音源的變化。
    本系統考慮到如果這些應用需要連結上網路時,位元率的減少便是相當重要的環節。因此,系統架構上可分為物件音訊的分析及合成兩部分:在分析端,為了減少位元率的大幅增加,利用參數編碼技術及參數產生器生成空間參數,如物件間或聲道間的時間差、強度差;在合成端則是利用空間參數將物件的音訊合成具有空間資訊的多聲道訊號。
    我們由頻譜觀察經系統處理後的音訊變化及經修正的ITU-R 7級制(+3~-3)之主觀音訊品質評量標準評量其環繞效果,在靜態音訊測驗中平均可達到約+1.49分,動態音訊的方向移動效果測驗平均可達到約+1.31分。


    Nowadays the multimedia applications of the 3D virtual reality are more and more popular. Although most applications focus on 3D video, the combination of 3D video and audio processing can enrich the experience of users. In this thesis, we propose an object-based audio rendering system (OARS) for 3D applications, such as first person shooter (FPS) games. With the proposed system, users are able to locate the objects, whether it is static or in motion.
    Since the audio objects may be in remote sites that are connected over Internet in many applications, the bitrate reduction is still critical. In this work, the system consists of the audio analysis part and synthesis part. In the audio analysis part, we utilize the parametric coding technique to generate spatial parameters, which include the time difference and the intensity difference for an object and loudspeakers, for rate reduction while keeping the spatial information. In the audio synthesis part, we reconstruct multi-channel audio outputs by integrating an audio signal and the spatial parameters.
    We evaluate the system performance by analyzing the spectrum of processed audios and subjective listening tests. Based on the modified ITU-R seven-grade (-3 to 3) subjective quality evaluation, our proposed system scores 1.49 on average for static audio objects and 1.31 for moving objects.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 附圖索引 VI 附表索引 IX 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 相關研究討論 3 1.4 論文架構 5 第二章 聲學原理與音源定位理論 6 2.1 基本聲學原理 6 2.1.1 聲音傳播原理 7 2.1.1.1 聲音量測參數 7 2.1.1.2 聲波的傳遞方式 8 2.1.1.3 音源型態 10 2.1.2 都卜勒效應(Doppler Effect) 13 2.2 空間音源定位理論 14 2.2.1 單音源音場:方向角定位理論 14 2.2.2 單音源音場:音源廣度理論 17 2.2.3 多音源音場合成理論 19 第三章 參數編碼架構與空間合成技術 21 3.1 參數編碼架構 22 3.1.1 參數立體聲架構簡介 23 3.1.2 時域/頻域分析 24 3.1.3 參數立體聲解碼架構 28 3.1.3.1 解相關濾波器 29 3.1.3.2 空間音場合成 30 3.2 多聲道喇叭重建 34 3.2.1 基於正弦理論的立體聲效果 34 3.2.2 多聲道喇叭虛擬空間合成 36 第四章 音訊物件混音系統 40 4.1 系統架構簡介 40 4.1.1 系統原理分析 41 4.1.2 軟體設計流程 41 4.2 單物件音訊處理機制 43 4.2.1 空間座標系統 44 4.2.2 音源路徑之能量變化 45 4.2.3 音源傳播之時間延遲 45 4.2.4 動態音源處理 46 4.3 虛擬空間合成機制 48 4.3.1 多聲道環繞喇叭空間重建 48 4.3.1.1 聲道間強度差資訊 49 4.3.1.2 聲道間時間差資訊 51 4.3.2 多物件音訊合成至同一空間 53 第五章 實驗結果與討論 56 5.1 主觀音訊品質評量 56 5.2 靜態音訊位置變化之空間效果統計 59 5.3 動態音訊位置變化之空間效果分析 70 5.4 實驗數據統計分析 85 第六章 結論及未來展望 88 參考文獻 90

    [1] ISO/IEC JTC1/SC29/WG11, “Text of ISO/IEC 14496-3:2001/FPDAM2 (parametric coding for high quality audio),” ISO/IEC JTC1/SC29/WG11 N5713, July 2003.
    [2] ISO/IEC JTC1/SC29/WG11, “Text of ISO/IEC FDIS 23003-1:2006 (Information technology - MPEG audio technologies - Part 1: MPEG Surround),” July 2006.
    [3] ISO/IEC JTC1/SC29/WG11, “Text of ISO/IEC FDIS 23003-2:2010 (Information technology - MPEG audio technologies - Part 2: Spatial Audio Object Coding (SAOC)),” October 2010.
    [4] 蔡國隆、王光賢、涂聰賢,聲學原理與噪音量測控制,二版,全華圖書股份有限公司,台北縣,民國九十七年。
    [5] Lord Rayleigh (J.W. Strutt), “On our perception of sound direction,”
    Philosophical Magazine, 13:214–232, 1907.
    [6] C. Faller, “Parametric coding of spatial audio,” Proc. of the 7th International Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004.
    [7] J. Blauert and J. Raatgever. Spectral hearing: the psychophysics of human sound localization. MIT Press, Cambridge, Massachusetts, 1977.
    [8] J. Jakka, “Binaural to Multichannel Audio Upmix,” Department of Electrical and Communications Engineering, Helsinki university of technology, Espoo, June 6, 2005.
    [9] J. Hall and M. Fernandes, “The role of monaural frequency selectivity in binaural analysis,” in J. Acoust. Soc. Amer., vol. 76, pp. 435 – 439, 1984.
    [10] E. Schuijers, J. Breebaart, H. Purnhagen, and J. Engdeg˙ard, “Low complexity parametric stereo coding,” in Proc. 116th AES Convention, Berlin, Germany, May 2004.
    [11] R.Y. Tong, and P.C. Chang, “Low complexity Decoding in parametric stereo audio coding scheme, “M.S. thesis, Department of Communication Engineering National Central University (NCU), Taiyuan, Taiwan, 2010.
    [12] M. R. Schroeder and B. F. Logan, “Colorless Artificial Reverberation”, J. Audio Eng. Soc., vol. 9, no. 3, pp. 192-197, July 1961.
    [13] J. Breebaart, S. van de Par, A. Kohlrausch, and E. Schuijers, “High-quality parametric spatial audio coding at low bitrates,” in Proc. 116th AES Convention, Berlin, Germany, May 2004.
    [14] R. Irwan and R. M. Aarts, “Two-to-five channel sound processing,” Journal of the Audio Engineering Society, vol. 50, no. 11, pp. 914–926, 2002.
    [15] B. B. Bauer. Phasor analysis of some stereo phenomena. J. Acoust. Soc. Am., 33:1536-1539, Nov. 1961.
    [16] J. Breebaart and C. Faller, Spectral audio processing: MPEG surround and other applications., John Wiley & Sons, Ltd, England, 2007.
    [17] T. Fukue and N. Hamada, “DOA estimation of moving target under the clutter environment by applying MUSIC to the QMF Doppler filter bank,” in IEICE Trans. Commun., vol.e88-b, no. 5, May 2005.
    [18] ISO 226:2003-BS Acoustics, Normal equal-loudness-level contours, International Organization for Standardization (ISO) 2nd edition., Nov, 2005.
    [19] MIT Media Lab - HRTF Measurements of a KEMAR Dummy : http://sound.media.mit.edu/resources/KEMAR.html.
    [20] IRCAM HRTF database : http://recherche.ircam.fr/equipes/salles/listen/.
    [21] UC Davis the CIPIC interface laboratory - HRTF database : http://interface.cipic.ucdavis.edu/ .
    [22] C.Y. Che, M. Ouhyoung, and S.K. Jeng, “Virtual Reality Realization -- Implementation of Real-Time 3D Sound System, “M.S. thesis, Graduate Institute of Communication Engineering National Taiwan University (NTU), Taipei, Taiwan, 1999.
    [23] C.L. Tsan, and S.K. Jeng, “Implementation of Virtual Indoor 3D Acoustic Environment, “M.S. thesis, Graduate Institute of Communication Engineering National Taiwan University (NTU), Taipei, Taiwan, 2000.
    [24] S.C. Ming, and S.C. You, “3D Sound Rendering Using Loudspeakers In Reverberant Rooms, “M.S. thesis, Department of Computer Science and Information Engineering National Taipei University of Technology (NTUT), Taipei, Taiwan, 2002.
    [25] F.Y. Cheng, and S.C. You, “Spatial Localization Evaluation System for Parametric Stereo Audio, “M.S. thesis, Department of Computer Science and Information Engineering National Taipei University of Technology (NTUT), Taipei, Taiwan, 2008.
    [26] ITU-R. General methods for the subjective assessment of sound quality. ITU-R Recommend. BS.1284-1, 2003.

    QR CODE
    :::