跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃弘穎
Hong-Ying Huang
論文名稱: 台灣總體與政策變數對房價之影響評估
指導教授: 徐之強
Chih-Chiang Hsu
陳韻旻
Yun-Min Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 經濟學系
Department of Economics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 50
中文關鍵詞: 房價總體經濟變數貸款成數分位數迴歸異質性
外文關鍵詞: housing prices, macroeconomic variables, LTV policy, LASSO, quantile regression
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選取台灣2010年第1季至2024年第2季之季資料,涵蓋六大都會區(台
    北、新北、桃園、新竹、台中與高雄),結合LASSO(LeastAbsoluteShrinkageand
    Selection Operator)進行變數選取,並採用分位數迴歸模型(QuantileRegression)探
    討總體經濟變數與LTV政策在不同房價區段下之影響差異。此方法同時兼顧高維資
    料處理能力與分布異質性辨識,有助於補足傳統OLS模型的限制。
    實證結果顯示,匯率(TWD/USD)變動在所有城市與各分位數中皆呈穩定負向
    效果,意即台幣升值期間,房價普遍上揚,顯示資本流動與購屋預期同步影響市場
    價格。物價變數(CPI)與貨幣供給(M2)則展現地區性與價格分位之異質性,例
    如CPI滯後在桃園、新竹與台中的高價市場表現顯著正向,而M2在新北與新竹高
    價區段之推升效果尤為明顯。政策面方面,LTV限貸措施普遍於高分位數顯著負向,
    顯示其對高價市場確實發揮抑制效果,且不影響中低價位購屋族群,符合精準調控
    原則。此外,不同城市間房價反應機制亦存明顯差異。以新竹市為例,受科技產業
    聚落與高所得群體影響,其房價對M2與CPI滯後項特別敏感;高雄則在LTV政策
    下反應較為顯著。
    整體而言,本研究證實房價並非均質市場,總體經濟變數與政策措施對不同價格
    層與地區市場具備顯著異質性。分位數迴歸結合LASSO模型可有效揭示此一結構,
    亦為落實分區調控與差異化政策提供實證依據。建議未來政府在制定房市政策時,
    應考量市場內部的結構性差異,精準對應各區段之風險與動態,提升政策效率並維
    持住宅市場之穩定與公平。


    This study investigates the impact of macroeconomic variables and loan-to-value (LTV)
    policy on housing prices in Taiwan. The dataset covers quarterly data from Q1 2010 to Q2
    2024 across six major metropolitan areas: Taipei, New Taipei, Taoyuan, Hsinchu, Taichung,
    and Kaohsiung. Employing the Least Absolute Shrinkage and Selection Operator (LASSO)
    for variable selection and combining it with quantile regression, this research captures the
    heterogeneous effects of economic and policy variables across different housing price seg
    ments.
    Empirical findings reveal that the TWD/USD exchange rate has a consistently significant
    and negative effect on housing prices across all regions and quantiles, indicating that TWD
    appreciation leads to higher housing prices. Inflation (CPI) and money supply (M2) show
    varying effects across cities and price levels, with the strongest impact observed inthemid-to
    highquantiles. Onthepolicyfront, theLTVrestrictionpolicyexhibitsasignificantlynegative
    effect in the upper quantiles, particularly in high-price markets, suggesting that differentiated
    credit control measures are effective in mitigating housing market overheating.
    Overall, the study finds that Taiwan’s housing prices are jointly influenced by macroe
    conomic conditions and policy instruments, and that these effects are heterogeneous across
    regions and price distributions. The results provide empirical support for targeted policy
    interventions and regionally adaptive housing market regulation.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII 一、緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4.1研究背景............. .. .. .. .. .. ............................... 1 4.2研究動機............. .. .. .. .. .. ............................... 2 4.3台灣房價市場的異質性觀察.. .. .. .. . ............................. 3 4.4研究目的............. .. .. .. .. .. ............................... 4 4.5研究貢獻............. .. .. .. .. .. ............................... 4 二、文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1房價影響因素:總體經濟變數的角色.............................. 5 5.2總體審慎政策與LTV成數限制的政策效果......................... 7 5.3分位數迴歸與LASSO方法在房價研究上的應用.................... 7 三、研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6.1資料來源與變數定義.... .. .. .. .. .. .............................. 9 6.2資料前處理.......... . .. .. .. .. .. ............................... 10 6.3敘述性統計.......... . .. .. .. .. .. ............................... 12 6.4 LASSO變數選取方法... .. .. .. .. .. .............................. 15 6.5分位數迴歸模型設計.... .. .. .. .. .. .............................. 17 四、實證分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1台灣整體房價分析.... . .. .. .. .. .. ............................... 19 7.1.1 OLS結果....... .. .. .. .. .. ............................... 19 7.1.2 QuantileRegression結果.. .. ............................... 19 7.2主要城市房價分析.... . .. .. .. .. .. ............................... 23 7.2.1台北市分位數迴歸結果. .. .. ............................... 23 7.2.2新北市分位數迴歸結果. .. .. ............................... 24 7.2.3桃園市分位數迴歸結果. .. .. ............................... 26 7.2.4新竹市分位數迴歸結果. .. .. ............................... 27 7.2.5台中市分位數迴歸結果. .. .. ............................... 29 7.2.6高雄市分位數迴歸結果. .. .. ............................... 30 7.3六都實證結果比較與總結... .. .. .. ............................... 32 五、結論與建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8.1研究限制與未來展望.... .. .. .. .. .. .............................. 34 附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.1附錄一:資料來源.... . .. .. .. .. .. ............................... 37 1.2附錄二:ADF定態檢定結果. .. .. .. .............................. 37

    [1] 林士凱,2024,「總體審慎措施對臺灣房價的影響」,國立臺灣大學,社會科學
    院經濟學系碩士論文。
    [2] 陳旭昇、陳柏瑜,2024,「台灣的利率政策與房價」,《經濟論文叢刊》,52(4),
    377–409。
    [3] 陳妍蒨、張德存、林佑龍(2020),「資產流動性、失業與貨幣政策」,《經濟論
    文叢刊》,48(1),107–136。
    [4] 劉建宏,2022,「大台北房價與匯率及其他總體變數間的實證研究」,國立臺灣
    大學,社會科學院經濟學系碩士論文。
    [5] Altunbaş, Y., & Thornton, J. (2019). The impact of financial development on income
    inequality: A quantile regression approach. Economics Letters, 175, 51–56.
    [6] Crowe, C., Dell’Ariccia, G., Igan, D., & Rabanal, P. (2011). How to deal with real
    estate booms: Lessons from country experiences. IMF Working Paper, WP/11/91.
    [7] Gould,W.R.,&Pollock,K.H.(1997).Catch-effortestimationofpopulationparameters
    under the robust design. Biometrics, 207–216.
    [8] Hartog, R., & Schwartz, S. Y. (2001). Depth-dependent mantle anisotropy below the
    San Andreas fault system: Apparent splitting parameters and waveforms. Journal of
    Geophysical Research: Solid Earth, 106(B3), 4155–4167.
    [9] Houlié, N. (2025). The impact of economicpolicies on housing prices: Approximations
    and predictions in the UK, the US, France, and Switzerland from the 1980s to today.
    Risks, 13(5), 81.
    [10] Igan, D. M., & Kang, M. H. (2011). Do loan-to-value and debt-to-income limits work?
    Evidence from Korea. International Monetary Fund.
    [11] Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica, 33–50.
    [12] Kuttner, K., & Shim, I. (2012). Taming the real estate beast: The effects of monetary
    and macroprudential policies on housing prices and credit. RBA Annual Conference
    2012.
    [13] Lim, C. H., Costa, A., Columba, F., Kongsamut, P., Otani, A., Saiyid, M., Wezel, T.,
    & Wu, X. (2011). Macroprudential policy: What instruments and how to use them?
    Lessons from country experiences. International Monetary Fund.
    [14] Lee, C. T. (2022). The impacts of house and land transactions income tax system 2.0
    on the real estate market–A case study of Taoyuan City. PhD Thesis, National Central
    University.
    [15] Wang, H. J., & Chen, N. K. (2017). The impact of mortgage loan-to-value ratio on real
    estate prices and credit in Taiwan. Central Bank Quarterly, 39(3), 5–39.
    [16] Zietz, J., Zietz, E. N., &Sirmans, G.S.(2008).Determinantsofhouseprices: Aquantile
    regression approach. Journal of Real Estate Finance and Economics, 37, 317–333.

    QR CODE
    :::