跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王璿豪
Hsuan-Hao Wang
論文名稱: A full-space quasi Lagrange-Newton-Krylov algorithm for trajectory optimization problems with space mission
指導教授: 黃楓南
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 66
中文關鍵詞: 最佳化控制軌跡最佳化問題全空間類牛頓法衛星載具動力學
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 軌跡最佳化是航太工業經常使用的技術,例如找出最佳軌跡使得酬載重量最大化或是縮短衛星到達目標軌道的時間等等,這種類型的問題可以用數學建模成連續時間的最佳化控制問題。本篇論文主要是研究full-space quasi Lagrange-Newton-Krylov method作為數值求解器,首先會引入拉格朗日乘子將有約束的最佳化問題轉為無約束的最佳化問題,並求解一階必要條件(KKT condition),透過牛頓法結合回朔技術,在每一次牛頓迭代中,所有KKT系統的變數(狀態變數, 控制變數, 設計變數, 拉格朗日乘子) 會以 Krylov-subspace method 配合預處理技術同時被解出。本文會針對KKT系統中的 Hessian matrix 的建造找出提高計算效能的方法,並透過引入鬆弛變量來解決不等式限制條件問題。本文以三維座標的三節火箭問題和二維座標的金牛座火箭作為數值範例,相關的物理背景和數值結果將會在文章中呈現。


    The trajectory optimization is a commonly-used technique of applications in aerospace engineering, such as find the optimal trajectory to maximize the weight of the payload or minimize the time for satellite insertion the target orbit, etc. This type of problem can be modeled mathematically as some form of continuous time optimal control problems. This thesis focuses on the study of the full-space quasi Lagrange-Newton-Krylov method as our numerical solver. First, we introduce the Lagrangian multiplier to convert the constrained optimization problem into unconstrained optimization problem, and solve the first-order necessary condition(KKT condition). By the Newton method combined with the backtrack technique, in each Newton iteration, all KKT system variables (state variables, control variables, design variables, Lagrangian multipliers) will be solved at the same time by Krylov-subspace method with the precondition technology. In this thesis, we improve the computational efficiency of Hessian matrix constructor in KKT system, and solve the problem of inequality constraint by introducing slack variable. The three-dimensional case of the three stage rocket problems and two-dimensional case of Taurus rocket as a numerical example, the relevant physical background and numerical results will be presented in the thesis.

    Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Full-space quasi-Lagrange-Newton-Krylov algorithm . . . . . . . . . . . . 5 2.1 A description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 KKT matrix construction . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Newton step computation . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Globalization strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Multistage satellite launch vehicle problem . . . . . . . . . . . . . . . . . . 12 3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Launch point inertial (LPI) frame (xL; yL; zL) . . . . . . . . . 15 3.3 Mathematical model for launch vehicle system . . . . . . . . . . . . . . 15 3.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.2 Angle definition and control variables . . . . . . . . . . . . . . . 17 3.3.3 Coriolis force on LPI frame . . . . . . . . . . . . . . . . . . . . 18 3.3.4 Orbit insertion conditions . . . . . . . . . . . . . . . . . . . . . 18 3.3.5 Dynamic equation and optimal control problem . . . . . . . . . . 20 3.4 A parameter optimization problem . . . . . . . . . . . . . . . . . . . . . 24 4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 Non-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 three-stage rocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.1 Initial guess for control . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.2 Grid test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.3 Typical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.5 Consider inequality constraints . . . . . . . . . . . . . . . . . . . 36 4.2.6 Compare with two-dimensional case . . . . . . . . . . . . . . . . 38 4.3 Other examples: Taurus rocket . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.2 Dynamic equation . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.3 Initial guess for control . . . . . . . . . . . . . . . . . . . . . . . 43 4.3.4 Grid test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3.5 Typical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    [1] M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle point problems.
    Acta Numer., 14:1–137, 2005.
    [2] J.T. Betts. Survey of numerical methods for trajectory optimization. J. Guid. Contr.
    Dynam., 21:193–207, 1998.
    [3] J.T. Betts. Very low-thrust trajectory optimization using a direct SQP method. J.
    Comput. Appl. Math., 120:27–40, 2000.
    [4] J.T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear
    Programming. SIAM, Philadelphia, 2nd edition, 2010.
    [5] N. Biehn, S.L. Campbell, L. Jay, and T.Westbrook. Some comments on DAE theory
    for IRK methods and trajectory optimization. J. Comput. Appl. Math., 120:109–131,
    2000.
    [6] G. Biros and O. Ghattas. Parallel Lagrange–Newton–Krylov–Schur methods for
    PDE-constrained optimization. Part II: The Lagrange–Newton solver and its application
    to optimal control of steady viscous flows. SIAM J. Sci. Comput., 27:714–739,
    2005.
    [7] G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for
    PDE-constrained optimization. part I: The Krylov–Schur solver. SIAM J. Sci. Comput.,
    27:687–713, 2005.
    [8] A.E. Bryson and Y.-C. Ho. Applied Optimal Control: Optimization, Estimation, and
    Control. Taylor & Francis Group, 1975.
    [9] J.E. Dennis Jr. and R.B. Schnabel. Numerical methods for unconstrained optimization
    and nonlinear equations. SIAM, Philadelphia, 1996.
    [10] D.J. Estep, D.H. Hodges, and M. Warner. The solution of a launch vehicle trajectory
    problem by an adaptive finite-element method. Computer methods in applied
    mechanics and engineering, 190(35):4677–4690, 2001.
    [11] F. Fahroo and I.M. Ross. Costate estimation by a Legendre pseudospectral method.
    J. Guid., Contr. Dynam, 24:270–277, 2001.
    [12] M. Fink. Automatic Differentiation for Matlab. MATLAB Central File Exchange.
    Retrieved May 18, 2015, 2007.
    [13] P.E. Gill, L.O. Jay, M.W. Leonard, L.R. Petzold, and V. Sharma. An SQP method
    for the optimal control of large-scale dynamical systems. J. Comput. Appl. Math.,
    120:197–213, 2000.
    [14] D.G. Hull. Optimal Control Theory for Applications. Springer-Verlag, New York,
    2003.
    [15] C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia,
    1995.
    [16] Wilfried Ley, KlausWittmann, andWilli Hallmann. Handbook of space technology,
    volume 22. John Wiley & Sons, 2009.
    [17] P. Lu and M.A. Khan. Nonsmooth trajectory optimization-an approach using continuous
    simulated annealing. J. Guid. Contr, Dynam., 17:685–691, 1994.
    [18] R Timothy Marler and Jasbir S Arora. Survey of multi-objective optimization methods
    for engineering. Struct. Multidisc. Optim., 26(6):369–395, 2004.
    [19] J. Nocedal and S.J. Wright. Numerical Optimization. Springer-Verlag, New York,
    2006.
    [20] M.A. Patterson and A.V. Rao. GPOPS-II: A MATLAB software for solving
    multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation
    methods and sparse nonlinear programming. ACM Trans. Math. Software,
    41:1, 2014.
    [21] M. Pontani. Particle swarm optimization of ascent trajectories of multistage launch
    vehicles. Acta Astronaut., 94:852–864, 2014.
    [22] E.E. Prudencio, R. Byrd, and X.C. Cai. Parallel full space SQP Lagrange-Newton-
    Krylov-Schwarz algorithms for PDE-constrained optimization problems. SIAM J.
    Sci. Comput., 27:1305–1328, 2006.
    [23] A.V. Rao. Trajectory optimization: A survey. In Optimization and Optimal Control
    in Automotive Systems, pages 3–21. Springer, 2014.
    [24] W. Roh and Y. Kim. Trajectory optimization for a multi-stage launch vehicle using
    time finite element and direct collocation methods. Eng. Optim., 34:15–32, 2002.
    [25] Woongrae Roh and Youdan Kim. Trajectory optimization for a multi-stage launch
    vehicle using time finite element and direct collocation methods. Engineering optimization,
    34(1):15–32, 2002.
    [26] Y. Saad. Iterative methods for sparse linear systems. SIAM, Philadelphia, 2nd
    edition, 2003.
    [27] M.R. Sentinella and L. Casalino. Cooperative evolutionary algorithm for space trajectory
    optimization. Celestial Mech. Dyn. Astron., 105:211–227, 2009.
    [28] K. Subbarao and B.M. Shippey. Hybrid genetic algorithm collocation method for
    trajectory optimization. J. Guid. Contr, Dynam., 32:1396–1403, 2009.
    [29] S. Subchan and R. ˙ Zbikowski. Computational Optimal Control: Tools and Practice.
    John Wiley & Sons, 2009.
    [30] BN Suresh and K Sivan. Integrated Design for Space Transportation System.
    Springer, 2015.
    [31] O. von Stryk and R. Bulirsch. Direct and indirect methods for trajectory optimization.
    Annals Oper. Res., 37:357–373, 1992.
    [32] P. Williams. Jacobi pseudospectral method for solving optimal control problems. J.
    Guid. Contr. Dynam., 27:293–297, 2004.
    [33] A. Wuerl, T. Crain, and E. Braden. Genetic algorithm and calculus of variationsbased
    trajectory optimization technique. J. Spacecraft Rockets, 40:882–888, 2003.
    [34] H. Yang, F.-N. Hwang, and X-.C. Cai. Nonlinear preconditioning techniques for
    full-space Lagrange-Newton solution of PDE-constrained optimization problems.
    SIAM J. Sci. Comput., to appear, 2016.

    QR CODE
    :::