跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林正國
Cheng-Kuo Lin
論文名稱: 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立
pHEMT’s Simulation 、Fabrication and Nonlinear Modeling
指導教授: 詹益仁
Yi-Jen Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 87
中文關鍵詞: 異質結構砷化鎵小訊號模型非線性模型
外文關鍵詞: pHEMT, GaAs, Small-Signal Model, Nonlinear Model
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 本論文首先以二維元件模擬軟體TMA-MEDICI模擬單、雙異質結構高速移導率電晶體的電性特性及比較,決定出雙異質結構適合作為高頻功率元件,然後利用博達科技分子束磊晶系統(MBE)成長出我們需要的晶圓,再使用本校無塵室與量測設備製作元件與測量元件直流、高頻與功率特性。並利用Cold FET等量測方法萃取元件內外部元件參數建立小訊號模型。最後,再建立微波軟體中經改良的砷化鎵大訊號模型建立本元件之非線性模型,並與量測功率特性及線性度作比較。


    目 錄 第一章 緒論 §1.1簡介高速移導率場效應電晶體工作原理……….……...1 §1.2論文架構…………………………….………….………..4 第二章 異質結構高速移導率電晶體元件特性模擬 §2.1簡介…¼¼¼……….¼¼¼¼¼¼¼¼……………………….6 §2.2 物理模型及其參數設定¼¼¼¼……….¼¼¼¼¼¼…...….6 §2.3 模擬元件外型結構………...¼¼¼¼¼¼¼¼………..¼……9 §2.4 單異質虛擬式結構高速移導率電晶體模擬與研究….……….12 §2.5 雙異質虛擬式結構高速移導率電晶體模擬與研究…….….…16 §2.6 結語…………………………………..…………………...……20 第三章 雙異質結構高速移導率電晶體之製程與量測結果 §3.1簡介¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼…………………21 §3.2元件製程………………¼¼¼¼¼¼¼¼¼¼¼¼¼………22 §3.3量測結果與討論…………………………………….…………27 §3.3 結語…………………………………………………….……...34 第四章 雙異質結構高速移導率電晶體小訊號模型建立 §4.1簡介¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼..¼…...35 §4.2理論分析…………………………¼¼¼¼……………………35 §4.3外部寄生元件參數的決定¼¼¼¼¼…………………………38 §4.3.1萃取源極寄生電阻¼¼………………………..¼.………38 §4.3.2 Cold FET量測萃取外部寄生參數……….……...……….40 §4.4決定元件內部純質參數……………..………………..………..44 §4.5誤差分析與模擬結果討論……………………………..………48 §4.6 結語……………………………………………………………..51 第五章 雙異質結構高速移導率電晶體大訊號模型建立 §5.1簡介……………………………………………………..………52 §5.2大訊號模型介紹………………………………………..………52 §5.3大訊號模型的萃取方法與流程…………………………..…....55 §5.3.1 電流-電壓方程式…………………………………………..55 §5.3.2 電容、電阻非線性方程式…………………………………58 §5.4 擬合結果與討論………………………………………..……...61 §5.4.1小訊號S-參數模擬結果……………………………..…….61 §5.4.2大訊號輸出功率模擬結果………………………….....…..62 §5.4.3大訊號輸出功率模擬結果……………………………..…..66 第六章 結論¼...¼¼¼¼¼¼.¼¼¼¼¼¼...¼¼¼¼………….68 參考文獻..¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼………….69

    [1] R. Dingle, H. L. Stormer, A.C. Gossard and W. Wiexmann, Appl.
    Phys., Vol. 33, p665-667,1978
    [2] T.Mimura, S. Hiyamizu, T. Fujii and K. Nanbu, Jan. J. Appl.
    Phys., Vol. 19 L225-L227,1980.
    [3] K. Hirakawa, H. Sasaki, and J. Yoshion, Appl. Phys. Lett., Vol. 45,
    p253 1984
    [4] J. W. Matthews and A.E. Blakesless, J. Chystal Growth, Vol. 27, p.
    118,1974.
    [5] S.M. Sze, “High-speed semiconductor devices” , John Wiley , 1990.
    [6] S.M. Sze, “Physics of semiconductor devices”, John Wiley, 1981.
    [7] J.J. Barnes, R.J. Lomax and G. I. Hadded, “Finite-element
    simulation of GaAs MESFET’s with lateral doping profiles and sub-
    micron gates”, IEEE Trans. Electron Devices, vol. ED-23, p.10424,
    1976.
    [8] H. Tain, K.W. Kim, M.A. Littlejohn, S. M. Bedair and L.C.
    Withowski, “Two-dimensional analysis of short channel delta-doped
    GaAs MESFET’s”, IEEE Trans. Electron Devices N. vol. 39, p.4287,
    1997
    [9] Ralph Willams, “Modern GaAs Processing Methods”, Artech
    Hourse,1990
    [10] 黃智文, “砷化鎵功率電晶體及單晶微波混波器之設計與製
    作”,1998 國立中央大學電機工程研究所碩士論文。
    [11] G. Dambrine et all, “A new method to determining the FET small-
    signal circuit” IEEE Trans. Microwave Theory Tech., vol. 36 no.
    7, pp. 1151, 1988.
    [12] L. Yang et.all, “New method to measure source and drain resistance
    of the GaAs MESFET Model” IEEE Electron Device Lett., vol.
    EDL-7, pp. 75-77, 1986.
    [13] W. Curtice et all, “A nonlinear GaAs FET model for uses in the
    design of output circuit for power amplifiers” IEEE Trans.
    Microwave Theory Tech., vol. MTT-33 no. 12, pp. 183, 1985.
    [14] H. Statz. et. all, “GaAs FET device and circuit simulation in
    SPICE” IEEE Electron Device Lett., vol. EDL-34, pp. 160-166,
    1987
    [15] I. Angelov et. all, “A New Empirical Nonlinear model for HEMT
    and MESFET devices” IEEE Trans. Microwave Theory Tech., vol.
    40 no. 12, pp. 2258-2266, 1992.
    [16] Agilent-ADS EEHEMT Model Menu.

    QR CODE
    :::