| 研究生: |
高子豪 Tzu-Hao Kao |
|---|---|
| 論文名稱: |
使用格羅弗演算法解決漢米爾頓循環問題 Solving Hamiltonian Cycle Problem with Grover's Algorithm |
| 指導教授: |
江振瑞
Jehn-Ruey Jiang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 格羅弗演算法 、漢米爾頓循環問題 、神諭 、量子線路 、量子電腦 、量子計數器 |
| 外文關鍵詞: | Grover's algorithm, hamiltonian cycle, oracle, quantum circuit, quantum computer, quantum counter |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
漢米爾頓循環(Hamiltonian Cycle)問題一直以來都是一個引人關注的難題,因為它具有廣泛的應用,例如 : 公車路線規劃和基因作圖(gene mapping)等等。在許多領域中,尋找漢米爾頓循環或漢米爾頓路徑的解答都具有重要性,然而,漢米爾頓循環問題屬於NP困難(NP-hard)問題,意味著在傳統的古典演算法中解決此問題需要龐大的時間和空間複雜度。隨著量子電腦的崛起,格羅弗演算法(Grover's algorithm)的出現為解決漢米爾頓循環問題提供了新的可能性。因為格羅弗演算法在解決非結構搜尋(unstructured search)問題時相較於古典窮舉演算法具有平方量級的加速,因而引發本論文利用格羅弗演算法解決漢米爾頓循環問題的動機。
本論文旨在提出更高效且節省量子位元的量子線路,以使用格羅弗演算法解決任意圖的漢米爾頓循環問題。所提出的量子線路使用三個依照漢米爾頓循環限制而建立的格羅弗演算法神諭(oracle)將正確的解標記為負相位,然後使用相位增幅器(diffuser)提高正確解的測量機率,並透過量子計數(quantum counting)演算法估計出的神諭迭代次數來迭代神諭以求出漢米爾頓循環問題的解答。為了驗證量子線路的正確性,透過IBM量子電腦模擬器及ibmq_mumbai 量子電腦來模擬執行或執行量子線路。本論文比較了所提出的量子線路在不同轉譯(transpiling)最佳化等級及佈局方式在量子電腦中執行的優劣,接著與幾個解決漢米爾頓循環問題的古典演算法進行比較。比較結果顯示所提出的方法只需較少的量子位元就可以達到與古典演算法相近的時間複雜度。
Hamiltonian cycle problem has long been a challenging and intriguing problem due to its wide range of applications, such as bus route planning and gene mapping. Finding solutions to hamiltonian cycles or paths is of great importance in various fields. However, hamiltonian cycle problem belongs to the class of NP-hard problems, which means that solving it using traditional classical algorithms requires significant time and space complexity. With the rise of quantum computers, the emergence of Grover's algorithm has provided new possibilities for solving hamiltonian cycle problem. Grover's algorithm offers a quadratic speedup compared to classical brute-force algorithms in solving unstructured search problems, which has motivated this paper to explore the application of Grover's algorithm to tackle the Hamiltonian cycle problem. In this paper, we propose a more efficient and resource-saving quantum circuit for solving the Hamiltonian cycle problem of arbitrary graphs using Grover's algorithm. The proposed quantum circuit utilizes three Grover’s algorithm oracles based on Hamiltonian cycle constraints to mark the correct solution with a negative phase, and then uses a phase amplifier (diffuser) to increase the measurement probability of the correct solution. The proposed approach further utilizes the quantum counting algorithm to estimate the number of iterations required for the oracle, in order to find the solution to the Hamiltonian cycle problem. To validate the correctness of the quantum circuit, simulations or executions are conducted using the IBM quantum computer simulator and ibmq_mumbai quantum computer.Furthermore, this paper compares the performance of the proposed quantum circuit when transpiling at different optimization levels and layout methods on quantum computers, and then compares it with several classical algorithms for solving hamiltonian cycle problem. The comparison results demonstrate that the proposed method achieves a comparable time complexity to classical algorithms with fewer quantum bits required.
[1]Graph Algorithms in Bioinformatics Retrieved March 1, 2023, from https://cseweb.ucsd.edu/classes/wi12/cse282-a/Lecture06_Ch08_GraphsDNAseq.pdf
[2]Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer computations (pp. 85-103). Springer, Boston, MA.
[3]Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.
[4]Rigetti Computing, Inc. (2021, March 10). Rigetti investor presentation. Retrieved February 6, 2023, from https://investors.rigetti.com/node/7141/html
[5]International Business Machines Corporation(n.d.)The IBM Quantum Development Roadmap. Retrieved February 6, 2023, from https://www.ibm.com/quantum/roadmap
[6]科技產業資訊室 (iKnow) (2021年5月14日)。主要16國家量子科技政策 預算超過246億美元。2023年2月6日,取自:https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=17799
[7]Shor, P. W. (1994, November). Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science (pp. 124-134). Ieee.
[8]Grover, L. K. (1996, July). A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (pp. 212-219).
[9]Wekipedia:Hamiltonian path problem. Retrieved March 1, 2023, from https://en.wikipedia.org/wiki/Hamiltonian_path_problem
[10]Dirac, P. A. M. (1939, July). A new notation for quantum mechanics. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 35, No. 3, pp. 416-418). Cambridge University Press.
[11]Building a useful quantum computer Retrieved Jun 7, 2023, from https://quantumai.google/qecmilestone
[12]IBM Qiskit Retrieved Jun 7, 2023, from https://qiskit.org/
[13]Baldwin, C. H., Mayer, K., Brown, N. C., Ryan-Anderson, C., & Hayes, D. (2022). Re-examining the quantum volume test: Ideal distributions, compiler optimizations, confidence intervals, and scalable resource estimations. Quantum, 6, 707.
[14]Transpiler Passes and Pass Manager Retrieved Jun 7, 2023, from https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/circuits_advanced/04_transpiler_passes_and_passmanager.ipynb
[15]Murali, P., Baker, J. M., Javadi-Abhari, A., Chong, F. T., & Martonosi, M. (2019, April). Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers. In Proceedings of the twenty-fourth international conference on architectural support for programming languages and operating systems (pp. 1015-1029).
[16]Li, G., Ding, Y., & Xie, Y. (2019, April). Tackling the qubit mapping problem for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (pp. 1001-1014).
[17]AerSimulator Retrieved Jun 7, 2023, from https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.AerSimulator.html
[18]江振瑞(2022)。輕鬆學量子程式設計 -- 從量子位元到量子演算法。桃園市:碁峰資訊。
[19]Chen, G., Fulling, S. A., Lee, H., & Scully, M. O. (2001). Grover’s algorithm for multiobject search in quantum computing. In Directions in Quantum Optics: A Collection of Papers Dedicated to the Memory of Dan Walls Including Papers Presented at the TAMU-ONR Workshop Held at Jackson, Wyoming, USA, 26–30 July 1999 (pp. 165-175). Springer Berlin Heidelberg.
[20]Fawly(2021, June) Wekipedia:Grover's algorithm. Retrieved March 1, 2023,from https://en.wikipedia.org/wiki/Grover%27s_algorithm#/media/File:Grover's_algorithm_circuit.svg
[21]Nielsen, M.A. and Chuang, I.L. Quantum computation and quantum information. Cambridge University Press, 2000. Chapter 6.
[22]Saha, A., Saha, D., & Chakrabarti, A. (2020, December). Circuit design for k-coloring problem and its implementation on near-term quantum devices. In 2020 IEEE International Symposium on Smart Electronic Systems (iSES)(Formerly iNiS) (pp. 17-22). IEEE.
[23]Lutze, D. (2021). Solving Chromatic Number with Quantum Search and Quantum Counting. Master Thesis, California Polytechnic State University.
[24]Haverly, A., & López, S. (2021, July). Implementation of Grover’s Algorithm to Solve the Maximum Clique Problem. In 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (pp. 441-446). IEEE.
[25]Mukherjee, S. (2022). A grover search-based algorithm for the list coloring problem. IEEE Transactions on Quantum Engineering, 3, 1-8.
[26]Roch, C., Castillo, S. L., & Linnhoff-Popien, C. (2022, March). A Grover based Quantum Algorithm for Finding Pure Nash Equilibria in Graphical Games. In 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C) (pp. 147-151). IEEE.
[27]Alasow, A., & Perkowski, M. (2022, May). Quantum Algorithm for Maximum Satisfiability. In 2022 IEEE 52nd International Symposium on Multiple-Valued Logic (ISMVL) (pp. 27-34). IEEE.
[28]Jehn-Ruey Jiang, "Quantum Circuit Based on Grover Algorithm to Solve Hamiltonian Cycle Problem," accepted to present at IEEE Eurasia Conference on IOT, Communication and Engineering (IEEE ECICE 2022), 2022.
[29]Wang, P. H., Chen, J. H., & Tseng, Y. J. (2022). Intelligent pharmaceutical patent search on a near-term gate-based quantum computer. Scientific Reports, 12(1), 175.
[30]Heidari, S., & Farzadnia, E. (2017). A novel quantum LSB-based steganography method using the Gray code for coloured quantum images. Quantum Information Processing, 16(10), 242.
[31]Boyer, M., Brassard, G., Høyer, P., & Tapp, A. (1998). Tight bounds on quantum searching. Fortschritte der Physik: Progress of Physics, 46(4‐5), 493-505.
[32]Held, M., & Karp, R. M. (1962). A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied mathematics, 10(1), 196-210.
[33]Björklund, A., & Husfeldt, T. (2013, October). The parity of directed Hamiltonian cycles. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (pp. 727-735). IEEE.
[34]Iwama, K., & Nakashima, T. (2007, July). An improved exact algorithm for cubic graph TSP. In International Computing and Combinatorics Conference (pp. 108-117). Springer, Berlin, Heidelberg.
[35]Eppstein, D. (2007). The traveling salesman problem for cubic graphs. J. Graph Algorithms Appl., 11(1), 61-81.
[36]Bjorklund, A. (2014). Determinant sums for undirected hamiltonicity. SIAM Journal on Computing, 43(1), 280-299.
[37]Nation, P., & Johnson, B. (2021). How to measure and reset a qubit in the middle of a circuit execution. IBM Research Blog, 11.
[38]Mastriani, M. (2019). Non-ambiguity quantum teleportation protocol. arXiv preprint arXiv:2001.05832.
[39]IBM Quantum, https://quantum-computing.ibm.com/ (accessed May
26, 2023).
[40]Mao, Y., Shresthamali, S., & Kondo, M. (2023). Quantum Circuit Fidelity Improvement with Long Short-Term Memory Networks. arXiv preprint arXiv:2303.17523.