跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張瀞文
Ching-Wen Chang
論文名稱: 具符元排列的空時區塊編碼之空間調變
Space-Time Block Coded Spatial Modulation with Symbol Permutation
指導教授: 魏瑞益
Ruey-Yi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 49
中文關鍵詞: 空識區塊編碼
外文關鍵詞: space time block code
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結合空時區塊編碼 (space-time block code) 的空間調變 (spatial modulation),比
    起傳統的空間調變藉由一次使用兩個傳送天線可以增加多樣性。然而,現有的
    STBC-SM 方案使用旋轉角度來提高頻譜效率,這導致編碼增益距離較小並且星
    座擴展較小。為了解決這個問題,我們提出了一種新的 STBC-SM 方案,該方案
    通過置換多個 STBC 區塊的符元而無需旋轉角度,從而通過選擇不同的排列樣式
    來提高數據速率。該方案被稱為具有符號排列 (symbol permutation) 的空時區塊編
    碼。我們推導了符號排列樣式並設計了 STBC-SM-SP 的例子。為了降低複雜性,
    我們提出了一種簡化複雜度的最大相似度檢測器,該檢測器的複雜性隨著傳送
    天線的數量呈線性增長。此外,所提出的符元排列可應用於其他 STBC-SM 方案
    以提高其頻譜效率。分析界限和電腦模擬結果表明,STBC-SM-SP 和結合符元的
    STBC-SM 系統都優於其他 STBC-SM 技術。


    Spatial modulation (SM) with space-time block coding (STBC) increases diversity order
    compared to conventional SM by activating two transmit antennas each time. However, existing
    STBC-SM schemes use rotation angles to increase spectral efficiency, leading to smaller
    coding-gain distance and constellation expansion. To address this, we propose a novel STBCSM scheme that permutates symbols of multiple STBC blocks without rotation angles, allowing
    for increased data rate by selecting different permutation patterns. The proposed scheme is
    called STBC-SM with symbol permutation (STBC-SM-SP). We derive permutation patterns
    and design examples of STBC-SM-SP. To reduce complexity, we propose a reduced-complexity
    maximum-likelihood (ML) detector for STBC-SM-SP, whose complexity grows linearly with
    the number of transmit antennas. Moreover, the proposed symbol permutation (SP) can be
    applied to other STBC-SM schemes to improve their spectral efficiency. Analytical bounds and
    computer simulations demonstrate that both STBC-SM-SP and an STBC-SM system combined
    with SP outperform other STBC-SM techniques

    目錄 Page 致謝 i 目錄 ii 圖目錄 iv 表目錄 v 第一章 介紹 1 1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 第二章 背景回顧 4 2.1 空時區塊編碼空間調變的通道模型以及回顧 . . . . . . . . . . . . . 4 2.2 增加速率之廣義空間調變系統架構與理論推導 . . . . . . . . . . . . 6 2.3 傳送端-位元映射方式 . . . . . . . . . . . . . . . . . . . . . . . . . . 10 第三章 STBC-SM-SP 的傳送端 13 3.1 定義 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 排列樣式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 具符元排列空時區塊編碼空間調變例子 . . . . . . . . . . . . . . . . 19 3.4 低複雜最大可能性檢測器 . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 性能分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 ii 第四章 結合既有方法以及模擬結果 27 4.1 結合符元排列和既有空時區塊碼空間調變方法 . . . . . . . . . . . . 27 4.2 數值結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 第五章 結論 35 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 參考文獻 36

    參考文獻
    [1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE
    Trans. Veh. Technol., vol. 57, no. 4, pp. 2228-2242, Jul. 2008.
    [2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12, no. 8, pp. 545-547,
    Aug. 2008.
    [3] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless
    systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182–191, Dec. 2011.
    [4] P. Yang, M. D. Renzo, Y. Xiao, S. Li and L. Hanzo, “Design guidelines for spatial
    modulation,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 1, pp. 6-26, First
    Quarter 2015.
    [5] M. Wen, B. Zheng, K. J. Kim, M. Renzo, T. A. Tsiftsis, K.-C. Chen, and N. AlDhahir, “A survey on spatial modulation in emerging wireless systems: Research
    progresses and applications”, IEEE J. Select. Areas Commun., vol. 37, pp. 1949-
    1972, Sep. 2019.
    [6] E. Basar, U. Aygolu, E. Panayirci and H. V. Poor, “Space-time block coded spatial
    modulation,” IEEE Trans. Commun., vol. 59, no. 3, pp. 823-832, Mar. 2011.
    36
    [7] X. Li and L. Wang, “High rate space-time block coded spatial modulation with cyclic
    structure,” IEEE Commun. Lett., vol. 18, no. 4, pp. 532–535, Apr. 2014.
    [8] A. G. Helmy, M. Di Renzo, and N. Al-Dhahir, “Enhanced-reliability cyclic generalized spatial-and-temporal modulation,” IEEE Commun. Lett., vol. 20, no. 12,
    pp. 2374–2377, Dec. 2016.
    [9] C. Jeon and J. W. Lee, “Multi-strata space-time coded spatial modulation,” IEEE
    Commun. Lett., vol. 19, no. 11, pp. 1945–1948, Nov. 2015.
    [10] M.-T. Le, V.-D. Ngo, H.-A. Mai, X. N. Tran, and M. Di Renzo, “Spatially modulated
    orthogonal space-time block codes with nonvanishing determinants,” IEEE Trans.
    Commun., vol. 62, no. 1, pp. 85–99, Jan. 2014.
    [11] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
    [12] L. Wang, Z. Chen, Z. Gong, and M. Wu, “Diversity-achieving quadrature spatial
    modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 12, Dec. 2017.
    [13] 陳秉謙。「增加資料速率的同調和非同調空間調變架構」。碩士論文,國立中
    央大學通訊工程學系,2022。
    [14] R. Y. Wei, S. L. Chen, Y. H. Lin, and B. C. Chen, “Bandwidth-efficient generalized
    differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 72, no. 1, pp. 601-
    610, Jan. 2023.
    [15] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high data rate
    wireless communication: Performance criterion and code construction,” IEEE Trans.
    Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
    37
    [16] H. Jafarkhani, Space-Time Coding, Theory and Practice. Cambridge University
    Press, 2005.

    QR CODE
    :::