跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭世偉
Shi-Wei Zheng
論文名稱: 實驗室晶片整合之設計與製作
指導教授: 楊宗勳
Tsung-Hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 中文
論文頁數: 77
中文關鍵詞: 介電質電濕式驅動導模共振式光學感測
外文關鍵詞: GMR, EWOD
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生命科學與醫學研究中,樣品的分析通常包括三個典型步驟,即:樣品分離處理、生物化學反應、結果檢測和分析。現今的實驗室晶片通常只具有執行單一步驟的能力,因此在進行樣品的分析的實驗時,常常需要將專門的樣品晶片、反應晶片、檢測晶片以及微泵和微閥門等元件結合,這不僅耗時、耗費成本而且也可能對實驗造成影響。
      因此,本研究提出將驅動器與感測器結合的概念,將介電質電濕式(electrowetting on dielectric, EWOD)微流體系統與導模共振(guided-mode resonance)感測整合至微小晶片上,並且利用整合後的晶片來進行不同濃度的蔗糖液滴訊號量測實驗。由實驗結果得知,本研究製作的晶片不僅成功的將驅動器與感測器結合,而且還能做到動態與即時的量測效果。


    In life science and medicine research, the assay of the testing samples includes three steps : sample preparation、biochemistry reaction、examination and analysis. Currently, the biochips working with single function require other device such as sample chips、reaction chips、assay chips、micro pump、micro-valve and so on, to perform experiments on assay of the testing sample that are time-consuming and money-wasting.
    In this work, we propose the concept about integration of actuator and sensor, so the electro-wetting on dielectric (EWOD) micro-fluidic system is integrated with guide-mode resonance (GMR) sensors for the assay of sucrose aqueous solution. The optical spectrum analyzer (OSA) data reveals that the integrated chip works normally, also can achieve in-situ detection.

    第一章 緒論 1 1.1 生物晶片簡介 3 1.2 生物晶片功能 6 1.2.1 介電質電濕式驅動(EWOD) 6 1.2.2 EWOD的應用實例 9 1.3 研究動機 15 第二章 原理 16 2.1 驅動模組 16 2.2 感測模組 22 第三章 晶片的製作 27 3.1 驅動模組的製作 27 3.2 感測模組的製作 32 3.3 系統整合 40 第四章 實驗量測結果與討論 50 4.1 不同濃度的蔗糖水溶液偵測實驗 50 4.2 量測結果與討論 53 第五章 結論 60 參考文獻 62

    [1]. T. Livache, H. Bazin, P. Caillat, and A. Roget, "Electroconducting polymers for the construction of DNA or peptide arrays on silicon chips," in Biosensors & Bioelectronics, Anonymous (ELSEVIER ADVANCED TECHNOLOGY, 1998), pp. 629-634.
    [2]. P. J. Obeid and T. K. Christopoulos, "Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection," Anal. Chim. Acta 494, 1-9 (2003).
    [3]. D. J. Cahill, "Protein and antibody arrays and their medical applications," J. Immunol. Methods 250, 81-91 (2001).
    [4]. D. S. Mehta, C. Y. Lee, and A. Chiou, "Multipoint parallel excitation and CCD-based imaging system for high-throughput fluorescence detection of biochip micro-arrays," Opt. Commun. 190, 59-68 (2001).
    [5]. Y. Ito and M. Nogawa, "Preparation of a protein micro-array using a photo-reactive polymer for a cell-adhesion assay," Biomaterials 24, 3021-3026 (2003).
    [6]. J. H. Kang and J. K. Park, "Development of a microplate reader compatible microfluidic device for enzyme assay," Sens. Actuator B-Chem. 107, 980-985 (2005).
    [7]. Y. Huang and B. Rubinsky, "Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation," in Sensors and Actuators A-Physical, Anonymous (ELSEVIER SCIENCE SA, 2003), pp. 205-212.
    [8]. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, "An integrated nanoliter DNA analysis device," Science 282, 484-487 (1998).
    [9]. A. Manz, N. Graber, and H. M. Widmer, "Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing," in Sensors and Actuators B-Chemical, Anonymous (ELSEVIER SCIENCE SA LAUSANNE, 1990), pp. 244-248.
    [10]. D. J. Laser and J. G. Santiago, "A review of micropumps," J Micromech Microengineering 14, R35-R64 (2004)
    [11]. S. K. Cho, Y. Zhao, and C. Kim, "Concentration and binary separation of micro particles for droplet-based digital microfluidics," Lab Chip 7, 490-498 (2007).
    [12]. Gregory T.A. Kovacs., Micromachined transducers sourcebook (McGraw-Hill, 1998)
    [13]. L. Yobas, M. A. Huff, F. J. Lisy, and D. M. Durand, "A novel bulk-micromachined electrostatic microvalve with a curved-compliant structure applicable for a pneumatic tactile display," J Microelectromech Syst 10, 187-196 (2001)
    [14]. M. W. J. Prins, W. J. J. Welters, and J. W. Weekamp, "Fluid control in multichannel structures by electrocapillary pressure," Science 291, 277-280 (2001).
    [15]. J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C. J. Kim, "Electrowetting and electrowetting-on-dielectric for microscale liquid handling," in Sensors and Actuators A-Physical, Anonymous (ELSEVIER SCIENCE SA, 2002), pp. 259-268.
    [16]. M. G. Pollack, A. D. Shenderov, and R. B. Fair, "Electrowetting-based actuation of droplets for integrated microfluidics," Lab Chip 2, 96-101 (2002).
    [17]. H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, "Low voltage electrowetting-on-dielectric," J. Appl. Phys. 92, 4080-4087 (2002)
    [18]. W. J. J. Welters and L. G. J. Fokkink, "Fast electrically switchable capillary effects," Langmuir 14, 1535-1538 (1998).
    [19]. K. Ichimura, S. Oh, and M. Nakagawa, "Light-Driven Motion of Liquids on a Photoresponsive Surface," Science 288, 1624-1626 (2000).
    [20]. T. S. Sammarco and M. A. Burns, "Heat-transfer analysis of microfabricated thermocapillary pumping and reaction devices," J Micromech Microengineering 10, 42-55 (2000).
    [21]. T. S. Sammarco and M. A. Burns, "Thermocapillary pumping of discrete drops in microfabricated analysis devices," AICHE J. 45, 350-366 (1999).
    [22]. B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "ELectrochemical principles for active control of liquids on submillimeter scales," Science 283, 57-60 (1999).
    [23]. Hong Ren, V. Srinivasan, and R. B. Fair, "Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip chemical dilution," TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003 1, 619-622 vol.1 (2003).
    [24]. 陳明宏 and 曾繁根, "數位化微流體操縱技術," 科學發展.
    [25]. S. K. Cho, H. J. Moon, and C. J. Kim, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," J Microelectromech Syst 12, 70-80 (2003).
    [26]. M.G.Pollack, P.Y.Paik, A.D.Shenderov, V.K.Paluma, F.S.Dietrich, and R.B.Fair, "investigation of electrowetting-based microfluidic for real-time pcr application," in miniaturized chemical and biochemical analysis system, Anonymous (, 2003).
    [27]. Y. Chang, G. Lee, F. Huang, Y. Chen, and J. Lin, "Integrated polymerase chain reaction chips utilizing digital microfluidics," Biomed. Microdevices 8, 215-225 (2006).
    [28]. 廖仁偉, "蛋白質原位合成生物晶片之設計與製作," 國立中央大學光電研究所 (2008).
    [29]. R. B. Fair, A. Khlystov, T. D. Tailor, V. Ivanov, R. D. Evans, P. B. Griffin, Vijay Srinivasan, V. K. Pamula, M. G. Pollack, and J. Zhou, "Chemical and Biological Applications of Digital-Microfluidic Devices," Design & Test of Computers, IEEE 24; 24, 10-24 (2007).
    [30]. V. Srinivasan, V. K. Pamula, and R. B. Fair, "Droplet-based microfluidic lab-on-a-chip for glucose detection," Anal. Chim. Acta 507, 145-150 (2004).
    [31]. V. Srinivasan, V. K. Pamula, P. Paik, R. B. Fair, L. A. Smith, and D. Sobek, "Protein stamping for MALDI mass spectrometry using an electrowetting-based microfluidic platform," in Lab-on-a-Chip: Platforms, Devices, and Applications, Anonymous (, 2004)..
    [32]. Pierre-Gilles de Gennes, Françoise Brochard-Wyart, and David Quéré, Capillarity and Wetting Phenomena (springer, 2004)
    [33]. A. A. Darhuber, J. P. Valentino, S. M. Troian, and S. Wagner, "Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays," Microelectromechanical Systems, Journal of 12; 12, 873-879 (2003).
    [34]. G Lippmann, "Relations entre les phenomeneselectriques et capillaires," in Anonymous (, 1875).
    [35]. BERGE B., Électrocapillarité et mouillage de films isolants par l''eau (Comptes rendus de l''Académie des sciences, 1993).
    [36]. R. Guntupalli, J. Hu, R. S. Lakshmanan, T. S. Huang, J. M. Barbaree, and B. A. Chin, "A magnetoelastic resonance biosensor immobilized with polyclonal antibody for the detection of Salmonella typhimurium," Biosensors and Bioelectronics 22, 1474-1479 (2007).
    [37]. K. Ramanathan and B. Danielsson, "Principles and applications of thermal biosensors," Biosensors and Bioelectronics 16, 417-423 (2001).
    [38]. B. Palán, F. V. Santos, J. M. Karam, B. Courtois, and M. Husák, "New ISFET sensor interface circuit for biomedical applications," Sensors Actuators B: Chem. 57, 63-68 (1999).
    [39]. Joseph Wang, "Carbon-Nanotube Based Electrochemical Biosensors: A Review," Wiley InterScience 17
    [40]. R. L. Bunde, E. J. Jarvi, and J. J. Rosentreter, "Piezoelectric quartz crystal biosensors," Talanta 46, 1223-1236 (1998).
    [41]. C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sensors and Actuators 3 (1982/1983).
    [42]. A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, "Realization of a multichannel integrated Young interferometer chemical sensor," Appl. Opt. 42, 5649-5660 (2003).
    [43]. 廖淑君, "GMR(共振波導)運用在基因晶片上DNA雜交之研究," 國立中央大學光電研究所 (2008).
    [44]. S. Matsui, Y. Igaku, H. Ishigaki, J. Fujita, M. Ishida, Y. Ochiai, M. Komuro, and H. Hiroshima, "Room temperature replication in spin on glass by nanoimprint technology," in Journal of Vacuum Science & Technology B, Anonymous (A V S AMER INST PHYSICS, 2001), pp. 2801-2805.
    [45]. C. A. Bulthaup, E. J. Wilhelm, B. N. Hubert, B. A. Ridley, and J. M. Jacobson, "All-additive fabrication of inorganic logic elements by liquid embossing," Appl. Phys. Lett. 79, 1525-1527 (2001).
    [46]. Y. Xia and G. M. Whitesides, "SOFT LITHOGRAPHY," Annual Review of Materials Science 28, 153-184 (1998).
    [47]. X. M. Zhao, Y. N. Xia, and G. M. Whitesides, "Fabrication of three-dimensional micro-structures: Microtransfer molding," Adv Mater 8, 837-& (1996).
    [48]. Wikipedia, http://en.wikipedia.org/wiki/Gradient-index_optics.
    [49]. 吳建宏, "光學式生化反應即時偵測系統," 國立中央大學光電研究所 (2006).
    [50]. Piramoon, http://www.piramoon.com/sucrose.php.

    QR CODE
    :::