| 研究生: |
蔡沛均 Pei-Chun Tsai |
|---|---|
| 論文名稱: |
外行星的磁層及其衛星的交互作用: 以土衛一和天衛五為例 Satellite-Magnetosphere Interactions at Outer Planets: The Cases of Mimas and Miranda |
| 指導教授: |
葉永烜
Wing-Huen Ip |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 天文研究所 Graduate Institute of Astronomy |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 行星磁層 、衛星 、帶電粒子 、土衛一 、天衛五 |
| 外文關鍵詞: | Planetary Magnetosphere, Satellites, Charged Particles, Mimas, Miranda |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
衛星與磁層之間的相互作用對於了解外行星的磁層至關重要。其中一個有趣的現象是觀測到在土星的衛星土衛一(Mimas)和土衛三(Tethys)上的輻解作用(Radiolysis effect),其表面溫度分佈呈現類似電玩遊戲「小精靈(Pac-Man)」的圖案。這些圖案是由困在土星幾乎對稱的雙極磁場中的高能電子的碰撞所造成的。因此,我們想探討類似的效應是否也會出現在天王星的冰質衛星上,由於行星本身的磁場是偏移雙極場(Offset-Tilted Dipole Field),造成周圍的衛星圍繞行星時會經過高度不對稱的磁場。這項研究將透過隨時間調整其磁軸的傾斜並檢查對土衛一表面的帶電粒子撞擊的結果分佈來粗估土星磁極反轉的時間尺度。同時,我們也好奇以其對稱的磁場而聞名的土星,是否在長時間內保持穩定的雙極場,還是在過去曾經歷了磁極的反轉?這項研究有助於更好地了解土星和天王星磁場與其衛星之間的動力學,從而揭示外行星系統中更廣泛的行星演化過程。
The interactions between satellites and their planetary magnetospheres are crucial for understanding the magnetospheres of outer planets. One intriguing phenomenon is the radiolysis effects observed on Saturnian icy moons, Mimas and Tethys, characterized by Pac-man like patterns of surface temperature distribution. These patterns result from the bombardment of energetic electrons trapped within Saturn's nearly symmetrical dipole field. This prompts an investigation into whether similar effects may occur on the icy moons of Uranus and Neptune, which possess highly asymmetric and inclined orbits due to their Offset-Dipole Fields. Simultaneously, Saturn, characterized by its symmetric magnetic field, poses an intriguing question: does it maintain a stable dipole field over an extended period, or has it undergone magnetic reversal in the past? This research focuses on constraining the timescale of Saturn's magnetic reversal by modulating the tilt of its magnetic axis over time and examining the resultant distribution of charged particle impacts on Mimas. To address this, we aim to constrain the timescale of Saturn's magnetic reversal by modulating the tilt of its magnetic axis over time and examining the resultant distribution of charged particle impacts on its innermost moon, Mimas. This research contributes to a better understanding of the dynamics between Saturnian and Uranian magnetic fields and their moons, shedding light on the broader planetary evolution processes within the outer planets.
[1] Kivelson, M., Khurana, K., Russell, C. et al. (1996). Discovery of Ganymede's magnetic field by the Galileo spacecraft. Nature, 384, 537–541. https://doi.org/10.1038/384537a0
[2] Grodent, D., Bonfond, B., Radioti, A., Gérard, J. C., Jia, X., Nichols, J. D., & Clarke, J. T. (2009). Auroral footprint of Ganymede. Journal of Geophysical Research: Space Physics, 114(7). https://doi.org/10.1029/2009JA014289
[3] Jia, X., Walker, R. J., Kivelson, M. G., Khurana, K. K., & Linker, J. A. (2008). Three-dimensional MHD simulations of Ganymede’s magnetosphere. Journal of Geophysical Research, 113, A06212. https://doi.org/10.1029/2007JA012748
[4] Bagenal, F. (2013). Chapter 6: Planetary Magnetospheres. Planets, Stars and Stellar Systems, 3: Solar and Stellar Planetary Systems. https://doi.org/10.1007/978-94-007-5606-9_6
[5] Belcher, J. W. (1987). The Jupiter-Io Connection: An Alfvén Engine in Space. New Series, 9(4824).
[6] Broadfoot, A. L., Belton, M. J. S., Takacs, P. Z., Sandel, B. R., Shemansky, D. E., Holberg, J. B., Ajello, J. M., Atreya, S. K., Donahue, T. M., & Mcelroy, M. B. (1979). Extreme Ultraviolet Observations from Voyager 1 Encounter with Jupiter. Science, 204, 979-982. https://doi.org/10.1126/science.204.4396.979
[7] Schubert, G., Sonett, C. P., Schwartz, K., & Lee, H. J. (1973). Induced magnetosphere of the Moon: 1. Theory. Journal of Geophysical Research, 78(13), 2094–2110. https://doi.org/10.1029/JA078i013p02094
[8] Schneider, N. M., & Bagenal, F. (2007). Io's neutral clouds, plasma torus, and magnetospheric interaction. In R. C. Lopes, & J. R. Spencer (Eds.), Io After Galileo, (pp. 265–286). New York: Springer. https://doi.org/10.1007/978-3-540-48841-5_11
[9] Lundin, R., et al. (2004). Solar Wind-Induced Atmospheric Erosion at Mars: First Results from ASPERA-3 on Mars Express. Science, 305, 1933 - 1936. https://doi.org/10.1126/science.1101860
[10] Saur, J., Neubauer, F. M., Strobel, D. F., & Summers, M. E. (1999). Three dimensional plasma simulation of Io's interaction with the Io plasma torus: Asymmetric plasma flow. Journal of Geophysical Research, 104, 25,105–25,126.
[11] McGrath, M. A., & Johnson, R. E. (1987). Magnetospheric plasma sputtering of Io's atmosphere. Icarus, 69, 519–531.
[12] Acuna, M. H., Neubauer, F. M., & Ness, N. F. (1981). Standing Alfvén Wave current system at Io: Voyager 1 observations. Journal of Geophysical Research, 86(A10). https://doi.org/10.1029/JA086iA10p08513
[13] Belcher, J. W. (1987). The Jupiter‐Jo connection: An Alfvén engine in space. Science, 238, 170–176. https://doi.org/10.1126/science.238.4824.170
[14] Goertz, C. K. (1980). Io's Interaction with the Plasma Torus. Journal of Geophysical Research, 85, 2949–2956.
[15] Neubauer, F. M. (1980). Nonlinear standing Alfven wave current system at Io: Theory. Journal of Geophysical Research, 85, 1171.
[16] Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., & Saur, J. (2004). Magnetospheric interactions with satellites. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter: Planet, Satellites. Magnetosphere, (pp. 513–536). Cambridge: Cambridge University Press.
[17] Clarke, J., Ajello, J., Ballester, G. et al. (2002). Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature, 415, 997–1000. https://doi.org/10.1038/415997a
[18] Johnson, R. E., & Quickenden, T. I. (1997). Photolysis and radiolysis of water ice on outer solar system bodies. Journal of Geophysical Research: Planets, 102(E5), 10985–10996. https://doi.org/10.1029/97JE00068
[19] [20] Ligier, N., Poulet, F., Carter, J., Brunetto, R., & Gourgeot, F. (2016). VLT/SINFONI observations of Europa: New insights into the surface composition. The Astrophysical Journal, 151(6), 163. https://doi.org/10.3847/0004-6256/151/6/163
[20] Ligier, N., Poulet, F., Carter, J., Brunetto, R., & Gourgeot, F. (2016). VLT/SINFONI observations of Europa: New insights into the surface composition. The Astrophysical Journal, 151(6), 163. https://doi.org/10.3847/0004-6256/151/6/163
[21] Khurana, K., Kivelson, M., Stevenson, D. et al. (1998). Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395, 777–780. https://doi.org/10.1038/27394
[22] Kivelson, M. G., et al. (2000). Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa. Science, 289(5483), 1340–1343. https://doi.org/10.1126/science.289.5483.1340
[23] Burger, M. H. & Johnson, R. E. (2004). Europa’s neutral cloud: morphology and comparisons to Io. Icarus, 171, 557–560. https://doi.org/10.1016/j.icarus.2004.06.014
[24] Johnson, R. E., & Quickenden, T. I. (1997). Photolysis and radiolysis of water ice on outer solar system bodies. Journal of Geophysical Research: Planets, 102(E5), 10985–10996. https://doi.org/10.1029/97JE00068
[25] Nordheim, T. A., Regoli, L. H., Harris, C. D. K., Paranicas, C., Hand, K. P., & Jia, X. (2022). Magnetospheric Ion Bombardment of Europa’s Surface. The Planetary Science Journal, 3, 5. https://doi.org/10.3847/PSJ/ac382a
[26] Howett, C. J. A., Spencer, J. R., Schenk, P., Johnson, R. E., Paranicas, C., Hurford, T. A., Verbiscer, A., & Segura, M. (2011). A high-amplitude thermal inertia anomaly of probable magnetospheric origin on Saturn’s moon Mimas. Icarus, 216(1), 221–226. https://doi.org/10.1016/J.ICARUS.2011.09.007
[27] Schaible, M. J., Johnson, R. E., Zhigilei, L. v., & Piqueux, S. (2017). High energy electron sintering of icy regoliths: Formation of the PacMan thermal anomalies on the icy Saturnian moons. Icarus, 285, 211–223. https://doi.org/10.1016/j.icarus.2016.08.033
[28] Paranicas, C., Roussos, E., Decker, R. B., Johnson, R. E., Hendrix, A. R., Schenk, P., Cassidy, T. A., Dalton, J. B., Howett, C. J. A., Kollmann, P., Patterson, W., Hand, K. P., Nordheim, T. A., Krupp, N., & Mitchell, D. G. (2014). The lens feature on the inner saturnian satellites. Icarus, 234, 155–161. https://doi.org/10.1016/j.icarus.2014.02.026
[29] Lainey, V., Rambaux, N., Tobie, G., Cooper, N., Zhang, Q., Noyelles, B., & Baillié, K. (2024). A recently formed ocean inside Saturn’s moon Mimas. Nature, 626(7998), 280–282. https://doi.org/10.1038/s41586-023-06975-9
[30] Howett, C. J. A., Spencer, J. R., Hurford, T., Verbiscer, A., & Segura, M. (2012). PacMan returns: An electron-generated thermal anomaly on Tethys. Icarus, 221(2), 1084–1088. https://doi.org/10.1016/j.icarus.2012.10.013
[31] Smith, B. A., et al. (1986). Voyager 2 in the Uranian System: Imaging Science Results. Science, 233, 43–64. https://doi.org/10.1126/science.233.4759.43
[32] DeColibus, R. A., Chanover, N. J., & Cartwright, R. J. (2023). Are NH3 and CO2 Ice Present on Miranda? Planetary Science Journal, 4(10). https://doi.org/10.3847/PSJ/acf834
[33] Schenk, P. M. (1991). Fluid volcanism on Miranda and Ariel: flow morphology and composition. Journal of Geophysical Research, 96(B2), 1887–1906. https://doi.org/10.1029/90JB01604
[34] Connerney, J. E. P., Acuña, M. H., & Ness, N. F. (1987). The magnetic field of Uranus. Journal of Geophysical Research, 92(A13), 15329–15336. https://doi.org/10.1029/JA092iA13p15329
[35] Ness, N. F., Acuña, M. H., Behannon, K. W., Burlaga, L. F., Connerney, J. E. P., Lepping, R. P., & Neubauer, F. M. (1986). Magnetic Fields at Uranus. Science, 233, 85–89. https://doi.org/10.1126/science.233.4759.85
[36] Buratti, B. J., & Mosher, J. A. (1991). Comparative Global Albedo and Color Maps of The Uranian Satellites. Icarus, 90, 1–17.
[37] Shoemaker, E. M., & Wolfe, R. F. (1982). Cratering time scales for the Galilean Satellites. In D. Morrison (Ed.), Satellites of Jupiter (pp. 277–339). University of Arizona Press, Tucson.
[38] Buratti, B. J., Mosher, J., & Johnson, T. (1990). Albedo and color maps of the Saturnian satellites. Icarus, 87, 339–357.
[39] Thompson, W. R., Murray, B., Khare, B., & Sagan, C. (1987). Coloration and darkening of methane clathrate and other ices by charged particle irradiation: Applications to the outer Solar System. Journal of Geophysical Research, 92, 14,933–14,947.
[40] Alfvén, H. (1950). Cosmical Electrodynamics. Oxford.
[41] Regi (2016). Il Nuovo Cimento, 39C, 285. https://doi.org/10.1393/ncc/i2016-16285-x
[42] Baumjohann, W., & Treumann, R. A. (1996). Basic Space Plasma Physics. London: Imperial College Press.
[43] Hamlin, D. A., Karplus, R., Vik, R. C., & Watson, K. M. (1961). Mirror and azimuthal drift frequencies for geomagnetically trapped particles. Journal of Geophysical Research, 66, 1–4. https://doi.org/10.1029/JZ066i001p00001
[44] Paranicas, C., Cheng, A. F., & Mauk, B. H. (1996). Charged particle phase space densities in the magnetospheres of Uranus and Neptune. Journal of Geophysical Research: Space Physics, 101(A5), 10681–10693. https://doi.org/10.1029/96ja00077
[45] Marchand, R. (2010). Test-particle simulation of space plasmas. Communications in Computational Physics, 8(3), 471. https://doi.org/10.4208/cicp.201009.280110a