| 研究生: |
鄭光佑 Guang-You Zheng |
|---|---|
| 論文名稱: |
多孔矽製備與熱傳特性量測之研究 Fabrication and Thermal Transport Property Measurement of Porous Silicon |
| 指導教授: |
洪銘聰
Ming-Tsung Hung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 多孔矽 、熱傳特性量測 、雷射脈衝測定法 |
| 外文關鍵詞: | porous silicon, thermal transport property measurement, Flash method |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多孔矽發現至今,由於其光學、光電、熱、化學等特性,因此多孔矽在很多領域上有廣泛之研究,例如光偵測器、生物及化學感測器、氣體感測器之應用。近年來,多孔矽也被研究在熱電材料上之應用,好的熱電材料需要好的導電及低的熱傳導率,使熱電優值提升。利用奈米結構降低熱傳導係數是具潛力的方式,多孔矽能具有奈米等級的孔洞,造成熱傳導值的降低。一般來說製作多孔矽的方法概略分成乾式蝕刻、濕式化學蝕刻與電化學蝕刻。電化學蝕刻保有濕式蝕刻的優點,且具有低設備成本、蝕孔異向性高等優點,是目前最常用於研究多孔矽的製程方法。本文利用電化學蝕刻方法,改變不同電流密度及時間,製備出不同厚度及孔隙率之多孔矽材料,並利用暫態式的雷射脈衝測定法(Lsaer Flash)量測多孔矽之熱擴散係數,具有非接觸式避免破壞材料結構之優點,由於本文材料為多孔矽-矽雙層材料,透過有限元素分析軟體COMSOL 建立模型,並利用雙層模型,與實際量測配合,進而計算出多孔矽之熱傳導係數。經由製程得知,利用不同電流密度大小,能提升蝕刻速率及製作出不同孔隙率之多孔矽,改變蝕刻時間,能得到不同厚度及孔隙率的多孔矽。由熱傳特性量測結果得知,當孔隙率越大,熱傳係數隨著下降。熱傳導係數自溫度150K 至400K 呈現上升趨緩的趨勢。
Porous silicon has unique characteristics of optics, photoelectric, thermal ,chemistry etc.. It has been used in different area, for example, in photodetectors, biosensors, chemical sensors, and gas sensor. Recently, porous silicon has been found as a potential thermoelectric material due to its low thermal conductivity. In general, porous silicon can be made using dry etching, wet etching, and electrochemical
etching, in which electrochemical etching is the most common method to fabricate directional pores due to its low-cost and etching anisotropy. In this study, we fabricate porous silicon on silicon wafer using electrochemical etching. Different porous layer thickness and porosity are made by adjusting the current density and etching time. Thermal diffusivity of porous silicon is measured using transient laser flash method that can avoid the damages of the sample. Since the measured sample is composed of the porous silicon layer and the silicon substrate. To obtain the thermal transport properties of the porous silicon, finite element simulation is performed with the two-layer construction model. In the fabrication of the porous silicon, it is shown that the change of current density can increase the etching rate and the increase in etching time can lead to thicker thickness and higher porosity. The measurement results show
that the thermal conductivity of the porous silicon increase from 150 K to 400 K and reach a plateau. In addition, the thermal conductivity decrease as the porosity increae.
[1] A. Uhlir, “Electrolytic shaping of germanium and silicon, ” Bell system Technology Journal, Vol. 35, pp. 333,1956
[2] V. Lehmann, “Porous silicon - A new material for MEMS,” IEEE MEMS Workshop, pp.1-5, 1996.
[3] O. Bisi and S. Ossicini Surf. Sci. Rep., 38, 2000.
[4] Prabakaran R., Peres M., Monteiero T., Fortunato E., Martins R. and ,22nd international Conference on Amorphous and nanocrystalline Semicondutors, B reckenridge, CO, August 19-24, 2007, J. non-cryst. solids, 2008
[5] I.Suemune, N. Noguchi, M. Yamanishi, “Photoirradiation Effect on Photoluminescence from Anodized Porous Silicon and Luminescence Mechanism, “Japan Journal Applied Physics., vol. 31, L494, 1992
[6] S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous Silicon Microcavities for Biosensing Applications,” phys. stat., sol. pp.541-546,2000.
[7] D.J. Lockwoodm G.C. Aers, L.B. Allard, B. Bryskiewicz, S. Charbonneau, D.C. Houghton, J.P. McCaffrey, and A. Wang, Can. J. Phys. Vol.70, pp.1184,1992.
[8] Joo-Hyoung Lee, Giulia A. Gall, “Nanoporous Si as an Efficient Thermoelectric Material” NANO LETTERS. Vol. 8, No. 11 pp. 3750-3754,2008.
[9] R. L. Smith and S. D. Collinsa, “Porous silicon formation mechanisms,” J. Appl.
Phys” 71, R1, 1992.
[10] X. G. Zhang, ” Mechanism of Pore Formation on n-Type Silicon” J.Electrochem.Soc., Vol. 138, No12, 1991
[11] X. Badel, R. T. R. Kumar, P. Kleimann and J. Linneros, “Formation of ordered pore arrays at the nanoscale by electrochemical etching of n-type silicon,” Superlattices and Microstructures, Vol. 36, pp. 245-253, 2004
[12] 林景崎,陳韋旭,賴建銘,楊仁泓,鄭文達,蔡明蒔,“在氟化氨中以光
電化學蝕刻n-Si(100)單晶表面製作微米溝槽,”防蝕工程,第二十卷第四期,pp.353-362,民國95 年。
[13] G Gesele, J Linsmeier, V Drach, J Frickey andR Arens-FischerJ. Phys. D: “Temperature-dependent thermal conductivity of porous silicon” Appl. Phys. pp. 2911–2916, 1997
[14] Qing Shen, Tetsuharu Takahashi and Taro Toyoda “Characterization of Optical and Thermal Properties of Porous Silicon Using Photoacoustic Technique” analytical sciences , VOL.17, 2001
[15] V. Lysenko, S. Perichon ” Thermal conductivity of thick meso-porous silicon layers by micro-Raman scattering” J. Appl. Phys., 1999
[16] Jae Dong Chung, Massoud Kaviany “Effects of phonon pore scattering and Pore randomness on effective conductivity of porous silicon” International Journal of Heat and Mass Transfer 43, pp.521-538, 2001
[17] Jaona Randrianalisoa, and Dominique Baillis “Monte Carlo simulation of cross-plane thermal conductivity of nanostructured porous silicon films” journal of applied physics, 2008
[18] X. G. Zhang, S. D. Collins, and R. L. Smith, “Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution,” Journal of the Electrochemical Society, Vol. 163, No. 5, pp. 1561, 1989.
[19] V. Lehmann and U. Gösele, “Porous silicon formation: A quantum wire effect” Appl. Phys. Lett. 58, 1991
[20] M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew and A. G. Cullis, J. Cryst Growth, Vol. 73, pp. 622, 1985
[21] R.L. Smith and S.D. Collins, “Generalized model for the diffusion-limited aggregation and Eden models of cluster growth”, Phys. Rev. A, Vol. 39, pp. 5409, 1989
[22] G.D. Sanders and Y.C. Chang, “Theory of optical properties of quantum wires in porous silicon ’’, Phys. Rev. B, Vol. 45,pp, 856,1992
[23] W. J Parker., Jenkins, R. J., Butler, C. P., and Abbott, G. L., “Flash Method of Determining Thermal Diffusivity Heat Capacity and Thermal Conductivity,” J. Appl. Phys., 32, Vol 9, 1979 ,1961
[24] ASTM E1461-07 “Standard Test Method for Thermal Diffusivity by the Flash Method” west Conshohocken.PA, 2001
[25] M. Madou, Fundamentals of microfabrication, CRC press, New York, pp. 189, 1997.
[26] A. Halimaoui, Appl. Phys. Lett. 63, 1264 , 1993.
[27] St. Fronhoff, M.G. Berger, M. Thonissen, C. Dieker, L. Vescan, H. Mundera and H. lutn, Thin Solid Films, pp. 59-62, 1995
[28] Cowan, R. D., “Pulse Method of Measuring Thermal Diffusivity at High Temperatures,” J. Appl. Phys, 34, Vol 926, 1963.
[29] J.A. Cape, and G.W. Lehman, “Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity, ” J.Appl. Phys.,34, 1963
[30] Netzsch http://www.netzsch-thermal analysis.com/en/home.html
[31] F.P. Incropera, D. P. Dewitt, Fundamentals of heat and mass transfer, 2002.
[32] D. S. de Boor, Kim, X. Ao” Temperature and structure size dependence of the thermalconductivity of porous silicon” EPL, 96, 2011