跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林佳芳
Chia-Fang Lin
論文名稱: 吸積毫秒脈衝星 IGR J17591-2342 的脈衝時序分析
Pulsar Timing Analysis of the NICER Observations of Accreting Millisecond Pulsar IGR J17591-2342
指導教授: 周翊
Yi Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 73
中文關鍵詞: 天文學高能天文物理中子星脈衝星雙星系統吸積毫秒 X 光脈衝星
外文關鍵詞: astronomy, high energy astrophysics, neutron star, pulsar, binary system, accreting millisecond X-ray pulsar
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • IGR J17591-2342 是在 2018 年被發現的吸積毫秒 X 光脈衝星 (accreting millisecond x-ray pulsar),脈衝頻率為 527 Hz。在 2018 年爆發期的 NICER (Neutron star Interior Composition Explorer) 觀測中,可以發現有兩次再爆發 (rebrightening)。本論文的研究目標便是探討這兩次再爆發 (第一部分與第二部分) 之間,各自的自轉與公轉參數與各自在不同能量間的相位關係 (energy dependent pulse behaviors)。

    為了得到第一部分與第二部分各自的最佳自轉與公轉參數,本論文使用脈衝抵達時間延遲與 Tse et al. (2020) 提出的方法,以疊代的方式求出自轉與公轉參數修正量,藉此得到精確的參數。接著探討時間噪音 (flux-dependent timing noise) 對中子星自轉相位的影響。首先將第一部分、第二部分及整體觀測數據的資料點用各自的最佳自轉與公轉參數擬合後,得到各個資料點的脈衝基準點相位,接著代入與X光強度相關的時間噪音關係式 (Kulkarni, A. K., & Romanova 2013) 進行修正,然而擬合的結果並沒有明顯的改善。在本研究中認為,由於第一部分、第二部分及整體觀測數據分別用了不同組的自轉與公轉參數,而整體觀測數據包含的資料點多、其自轉與公轉參數較為準確,所以凸顯了時間噪音的效應。

    再來依照能量將光子區分成 11 個能帶,使用互相關 (cross-correlation) 的方法比較各個能帶能量間的脈衝時間延遲 (energy dependent pulse arrival time delay)。在本研究中,觀察到第一部分與第二部分皆存在低能延遲 (soft lag) 現象。在脈衝強度 (pulsed fraction) 分布方面,脈衝強度在 1-5 keV 的範圍裡逐漸上升,在更高能量的能帶裡逐漸降低。低能延遲與脈衝強度變化的現象,都能用黑體輻射分量較強的二分量模型與吸積盤熱輻射解釋。


    IGR J17591-2342, an accreting millisecond X-ray pulsar, was discovered in 2018 with a pulsation frequency of 527 Hz. From Neutron star Interior Composition Explorer observation during its 2018 outburst, two rebrightenings were found. The research goal of this thesis is to investigate the spin and orbital parameters and the energy dependent pulse behaviors for these two rebrightenings (part 1 and part 2).

    In order to obtain the spin and orbital parameters for part 1 and part 2, pulse arrival time delay was used. The accurate spin and orbital parameters can be estimate by iterative method proposed by Tse et al. (2020). Next, we discussed the effect of flux-dependent timing noise on the neutron star's rotation phase. After fitting the data points of part 1, part 2 and the overall observation data with their respective accurate spin and orbital parameters, the pulse phase evolution was obtained. Then we attempted to improve the fitting by applying the flux-depend timing noise model proposed by Kulkarni, A. K., & Romanova (2013). However, the fitting results shows no significant improvement. In this study, it is believed that since part 1, part 2 and the overall observation data used different sets of spin and orbital parameters respectively, and the overall observation data contains the more data points so its spin and orbital parameters are the more accurate, which highlights the effect of timing noise.

    The photons were divided into 11 energy bands to compare the energy dependent pulse arrival time delay through cross-correlation method. The soft lag phenomenon is observed in both part 1 and part 2. The pulsed fraction amplitude increases from 1 to 5 keV and then decreases at higher energy band. These phenomena can be explained by the two-component model with a strong blackbody component and the thermal radiation from the accretion disc.

    摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 ix 表目錄 x 第一章、緒論 Introduction 1 1.1 X 光雙星系統 X-ray Binary 2 1.1.1 高質量 X 光雙星 High Mass X-ray Binary, HMXB 3 1.1.2 低質量 X 光雙星 Low Mass X-ray Binary, LMXB 6 1.2 脈衝星 Pulsar 7 1.2.1 無線電脈衝星 Radio Pulsar 7 1.2.2 吸積毫秒 X 光脈衝星 Accreting Millisecond X-ray Pulsar, AMXP 9 1.3 IGR J17591-2342 14 1.4 論文簡述 Outline of this thesis 15 第二章、觀測與資料處理 Observations and Data Reduction 16 2.1 NICER 17 2.2 資料處理 Data reduction 19 2.3 光變曲線 Light curve 21 第三章、資料分析 Data Analysis 22 3.1 時序分析 Timing analysis 23 3.1.1 脈衝抵達時間延遲 Pulse Arrival Time Delay 23 3.1.2 〖Z_1〗^2 test 26 3.1.3脈衝波型與相位基準點 Pulse Profile and Fiducial Point 29 3.1.4 自轉與公轉參數 Spin and Orbital Parameters 32 3.2 能量間的相位關係Energy dependent pulse behaviors 36 3.2.1 能量與脈衝波形關係 Energy Dependent Pulse Profile 36 3.2.2 脈衝強度 Pulsed Fraction Amplitude 42 第四章、討論 Discussion 45 4.1 時間噪音 Flux-dependent Timing Noise 46 4.1.1 時間噪音 Flux-dependent Timing Noise 46 4.1.2 IGR J17591-2342 的時間噪音現象 Flux-dependent Timing Noise in IGR J17591-2342 47 4.2 能量間的脈衝時間延遲 51 4.2.1 二分量模型 Two-component model 52 4.2.2 IGR J17591-2342 的低能延遲 Soft lag of IGR J17591-2342 54 4.2.3 IGR J17591-2342 的脈衝強度 Pulse Fraction Amplitude of IGR J17591-2342 55 第五章、結論 Summary 56 參考文獻 Reference 57

    1. Alpar, M. A., Cheng, A. F., Ruderman, M. A., & Shaham, J. 1982, Natur, 300, 728
    2. Baade, Walter & Zwicky, Fritz, 1934, Remarks on Super-Novae and Cosmic Rays (Physical Review)
    3. Backer, D. C., Kulkarni, S. R., Heiles, C., Davis, M. M., & Goss, W. M. 1982, Natur, 300, 615
    4. Bondi & Hoyle, 1944, MNRAS, 104, 273
    5. Bozzo, E., Ducci, L., Ferrigno, C., et al. 2018, ATel, 11942
    6. Buccheri, R., Bennett, K., Bignami, G. F., et al. 1983, A&A, 128, 245
    7. Bult, P., Chakrabarty, D., Arzoumanian, Z. et al. 2020, ApJ, 898, 38
    8. Bult, P., Markwardt, C. B., Altamirano, D. et al. 2019, ApJ, 877, 70
    9. Chou, Y., Chung, Y., Hu, C.-P., & Yang, T.-C. 2008, ApJ, 678, 1316
    10. Cui, W., Morgan, E., & Titarchuk, L. 1998, ApJ, 504, L27
    11. Ducci, L., Kuulkers, E., Grinberg, V., et al. 2018, ATel, 11941
    12. Falanga, M., Kuiper, L., Poutanen, J., et al. 2005, A&A, 444, 15
    13. Falanga, M., Kuiper, L., Poutanen, J., et al. 2011, A&A, 529, A68
    14. Falanga, M., Kuiper, L., Poutanen, J., et al. 2012, A&A, 545, A26
    15. Ferrigno, C., Bozzo, W., Sanna, A., et al. 2018, ATel, 11957
    16. Galloway, D. K., Morgan, E. H., Krauss, M. I., Kaaret, P., & Chakrabarty, D. 2007, ApJ, 654, L73
    17. Gendreau, K. C., Arzoumanian, Z., & Okajima, T. 2012, Proc. SPIE, 8443, 844313
    18. Gierliński & Poutanen, 2005, MNRAS, 359, 1261
    19. Gierliński, M., Done, C., & Barret, D. 2002, MNRAS, 331, 141
    20. Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968, Natur, 217, 709
    21. Ibragimov, A., Kajava, J. J. E., & Poutanen, J. 2011, MNRAS, 415, 1864
    22. Krimm, H. A., Barthelmy, S. D., Cummings, J. R., et al. 2018, ATel, 11981
    23. Kulkarni, A. K., & Romanova, M. M. 2013, MNRAS, 433, 3048
    24. Lamb, F. K., Boutloukos, S., Van Wassenhove, S., Chamberlain, R. T., Lo, K. H., Clare, A., Yu, W., & Miller, M. C. 2008, arXiv:0808.4159
    25. Manchester, R. N. 2017, JApA, 38, 42
    26. Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993
    27. Ng, Mason, Ray, Paul S., & Bult, Peter, 2021, ApJL, 908, L15
    28. Nowak, M., Paizis, A., Chenevez, J., et al. 2018, ATel, 11988
    29. Papitto, A., Ferrigno, C., Bozzo, E., et al. 2013, Nature, 501, 517
    30. Patruno, A., & Watts, A. L. 2012, arXiv:1206.2727
    31. Patruno, A., Wijnands, R., & van der Klis, M. 2009c, ApJL, 698, L60
    32. Poutanen, J., & Gierliński, M. 2003, MNRAS, 343, 1301
    33. Radhakrishnan, V., & Srinivasan, G. 1982, CSci, 51, 1096
    34. Ray, P. S., Gendreau, K. C., Bult, P. M., et al. 2018, ATel, 12050
    35. Russell, D. M., & Lewis, F. 2018, ATel, 11946
    36. Russell, T. D., Degenaar, N., Wijnands, R., et al. 2018, ApJL, 869, L16
    37. Russell, T., Degenaar, N., Wijnands, R., & van den Eijnden, J. 2018, ATel, 11954
    38. Sanchez-Fernandez, C., Ferrigno, C., Chenevez, J., et al. 2018, ATel, 12000
    39. Sanna, A., Burderi, L., Riggio, A. et al. 2016, MNRAS, 459, 1340
    40. Sanna, A., Ferrigno, C., Ray, P. S., et al. 2018b, A&A, 617, L8
    41. Sanna, A., Papitto, A., Burderi1, L., et al. 2017, A&A, 598, A34
    42. Seward, F. D., Charles, P. A. 2010, Exploring the X-ray Universe (Cambridge University Press), 2nd
    43. Shaw, A. W., Degenaar, N., & Heinke, C. O. 2018, ATel, 11970
    44. Tse, K., Chou, Y., & Hsieh, H. 2020, APJ, 899, 120
    45. Watts, Anna L., & Strohmayer, Tod E., 2006, MNRAS, 373, 769
    46. Wijnands, R., & van der Klis, M. 1998, Natur, 394, 344

    QR CODE
    :::