跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周安泰
An-Tai Chou
論文名稱: 自聚性矽鍺多層量子點光學特性研究
Self-assembled Ge/Si multi quantum dots optical character research
指導教授: 徐子民
T. M Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 91
語文別: 中文
論文頁數: 70
中文關鍵詞: 量子點矽鍺
外文關鍵詞: Ge, quantum dots, Si
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用多層量子點的特性來提高矽鍺發光特性,並利用改變間隔層厚度,提高載子侷限。再利用快速熱退火實驗改變量子點發光波段。最後製作矽鍺量子點發光二極體,並改變頓化層的條件,提高室溫發光效率。


    We use self-assembled quantum dots to raise the optical efficiency of Ge/Si. And then we tune the wavelength of Ge/Si from 1.3um to 1.55 um with rapid thermal annealing. At last we have three different passivation processes of Ge/Si multi-layer quantum dots LED to improve our room optical efficiency.

    目錄 摘要 誌謝 第一章 簡介................................01 第二章 基本原理............................05 2-1 矽鍺多層量子點以其能帶結構......05 2-1-1 應力作用..................05 2-1-2 原子相互擴散..............12 2-2 光譜實驗原理....................13 2-2-1 光激發螢光................13 2-2-2 電激發螢光................16 第三章 樣品結構與實驗技術..................22 3-1 樣品結構........................22 3-1-1 矽鍺多層量子點............22 3-1-2 矽鍺發光二極體............22 3-2 光譜實驗技術....................25 3-2-1 光激發螢光................25 3-2-2 電激發螢光................28 第四章 結果分析與討論......................31 4-1 矽鍺多層量子點..................31 4-1-1 不同間隔層厚度............31 4-1-2 不同熱退火溫度............43 4-2 矽鍺多層量子點發光二極體........49 第五章 結論................................61 參考文獻......................................62

    參考文獻
    1. A .Gruhle, H.Kibbel, U.Erben, and E. Kasper, Electron lett 29, 415
    2. A. G. O’Nell and D.A.Antoniadis IEEE. Trans. Electron Devices 43, 911 (1996).
    3. R. P. G Karunasiri, J. S. Park, L. W. Kang and K. C. Sang, Opt. Eng(Bellingham)33. 1468(1994).
    4. J. C. Sturm, H. Manoharan, L. C. Lenchyshyn, M. L. W. Thewalt, N. L. Rowell, J.-P. Noël, and D. C. Houghton, Phys. Rev. Lett. 66, 1362 (1991).
    5. L. Vescan, A. Hartmann, K. Schmidt, Ch. Dieker, H. Lüth, and W. Jäger, Appl. Phys. Lett. 60, 2183 (1992).
    6. S. Fukatsu, N. Usami, Y. Shiraki, A. Nishida, and A. Nakagawa, Appl. Phys. Lett. 63, 967 (1993).
    7. D.J.Eagleham, and Cerullo, Phys. Rev. Lett. 64(16) p.1943 (1990)
    8. R.Apetz, L. Vescan, A. Hartmann, C. Dieker and H. Lüth, Appl. Phys. Lett. 66, 455 (1995).
    9. M.WDashiel, U Denker and O. G. Schmidt, Appl. Phys. Lett. 79, 2261 (2001).
    10. S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, Appl. Phys. Lett. 71, 258 (1997).
    11. Q. Xie, A. Madhukar, P.Chen, and N. P. Kobayashi, Phys. Rev. Lett., 75(13), p.2542 (1995).
    12. G. S. Solomon, J. A. trezza, A.F. Marshall and J. S. Harris, Jr. Phys. Rev. Lett., 76(6), p.952 (1996).
    13. O. G. Schmidt, O. Kienzle, Y. Hao, K. Eberl, and F. Ernst, Appl. Phys. Lett. 74, 1272 (1999).
    14. T. M. Hsu, Y. S. Lan and W. H. chang, Appl. Phys. Lett. 76, 691(1999).
    15. O.G. Schmidt, C. Lange, and K. Eberl, Appl. Phys. Lett. 75, 1905 (1999).
    16. S. Fukatsu, Y. Mera, M. Inoue, K. Maeda, H. Akiyama, and H. Sakaki, Appl. Phys. Lett. 68, 1889 (1996)
    17. O. G. Schmidt, K. Eberl, and Y. Rau, Phys. Rev. B 62, 16715 (2000).
    18. M. W. Dashiell, U. Denker, and O. G. Schmidt, Appl. Phys. Lett. 79, 2261 (2001).
    19. O. G. Schmidt and K. Eberl, Phys. Rev. B 61, 13 721 (2000).
    20. K. Eberl, O. G. Schmidt, O. Kienzle and F. Ernst, Thin Solid Films 373, 164 (2000).
    21. R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D.J.H. Cockayne, Appl. Phys. Lett. 69, 1888 (1996).
    22. R. Leon, S.Fafard,P. G. Piva, S. Ruvimov and Z. Liliental-Weber, Phys. Rev. B, 58, R4262 (1998).
    23. N. Usami, Y. Shiraki and S.Fukatsn Appl. Phys. Lett. 68, 2340 (1996).
    24. R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Lüth, Appl. Phys. Lett., 66, 445 (1995).
    25. T. Stoica, L. Vescan and M. Goryll, J. Appl. Phys. 83(6) 3367 (1998).

    QR CODE
    :::