跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李世懿
Shih-yi Li
論文名稱: 分布函數之反函數之核估計的模擬研究
A Simulation Study for Kernel Estimator of Inverse Distribution Function
指導教授: 許玉生
Yu-sheng Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 96
語文別: 中文
論文頁數: 34
中文關鍵詞: 分布函數之反函數核估計
外文關鍵詞: inverse distribution function, kernel estimator
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 分布函數為機率上重要的分析工具,其重要性不亞於機率密度函數及特徵函數。在統計上分布函數也有很多應用,令$F$表一分布函數,則$F^{-1}$可用於隨機變數之模擬及穩定型分布(stable distribution)之冪數(exponent)的估計。通常分布函數是未知的,必需用樣本估計。分布函數未知時,常用之分布函數的估計式為經驗分布(empirical distribution function)。本文之目的為研究$F^{-1}$的估計,但上述經驗分布卻因其反函數不存在,故不能直接運用。本文提出$F^{-1}(y)$之核估計式$widehat{F}^{-1}(y)$,因此式之機率性質非常複雜,故本文將以電腦模擬方式研究$widehat{F}^{-1}(y)$之漸近一致性(asymptotic consistency)及漸近常態性(asymptotic normality)。


    The inverse function of a distribution function has many applications in statistics. In practice, the inverse function is unknown and has to be estimated. The purpose of this paper is to discuss a kernel estimator $widehat{F}^{-1}(y)$ of the inverse function $F^{-1}(y)$ of a distribution function $F(x)$. Since the theoretical property of $widehat{F}^{-1}(y)$ is extremely complicated, we will investigate the asymptotic consistency and asymptotic normality of $widehat{F}^{-1}(y)$ via computer simulations.

    中文摘要...........................................i 英文摘要..........................................ii 致謝辭...........................................iii 目錄..............................................iv 1 簡介.............................................1 2 常態數據之模擬結果...............................5 3 柯西數據之模擬結果...............................8 4 羅吉斯數據之模擬結果............................11 5 模擬結果之比較..................................14 6 結論............................................15 參考文獻..........................................16 附錄一............................................18 附錄二............................................23 附錄三............................................28 附錄四............................................33

    [1] 周宗翰(2007). 單峰穩定型分布之冪數的經驗分布及核密度函數估計法。中央大學數學研究所碩士論文。
    [2] Alexander,K.S.(1984). Probability inequalities for empirical processes and a law of the iterated logarithm. Ann. probab.12,1041-1067.
    [3] Bolthausen,E.(1978). Weak convergence of an empirical process indexed by the closed convex subsets of $I^2$. Z. Wahrsch. Verw. Gebiete,43,173-181.
    [4] Chow,Y.S. and Teicher,H.(1997). Probability Theory. 3rd ed. Springer.
    [5] Chung,K.L.(2001). A Course in Probability Theory. 3rd ed. Academic Press.
    [6] Dahlhaus,R.(1988). Empirical spectral processes and their application to time series analysis. Stochastic Processes. Appl. ,30,69-83.
    [7] Dudlry,R.M.(1978). Central limit theorems for empirical measures. Probab.6,899-929.
    [8] Dudlry,R.M.(1984). Acourse on empirical processes. Lecture Notesin Math.1097,1-142. Springer, New York.
    [9] Eddy,R.M. and Hartigan,J.A.(1977). Uniform convergence of the empirical distribution function over convex sets. Ann. Statist,5,370-374.
    [10] Pettitt,A.N.(1979). Testing for bivariate normality using the empirical distribution function. Comm. Statist. A-Theory Methods,8,699-712.
    [11] Prakasa Rao,B.L.S.(1983). Nonparametric Functional Estimation Academic Press.
    [12] Shorack,G.R. and Wellner,J.A.(1986). Empirical Processes with Applications to Statistics.Wiley,New York.
    [13] Silverman,B.W.(1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall.
    [14] Sorensen,H.(2002). Estimation of diffusion parameters for discretely observed diffusion processes. Bernoulli,8,491-508.
    [15] Tapia,R.A. and Thompson,J.R.(1977). Nonparametric Probability Density Estimation. Johns Hopkins University Press.

    QR CODE
    :::