跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黎媛霞
Le Nguyen Hiep
論文名稱: 應用瀝青膠泥化學成份與發泡因子於冷拌再生發泡瀝青混凝土之成效研究
Evaluation of the binder chemical components, foaming parameters, and its effect on the Cold mix asphalt performance using Recycled Asphalt Pavement
指導教授: 陳世晃
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 80
中文關鍵詞: 發泡瀝青發泡因子化性分析發泡劑
外文關鍵詞: Foam bitumen, foamability factors, SARA, Foaming agent
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的幾年中,已經開發出將泡沫瀝青膠泥和再生瀝青路面 (Recycle Asphalt Pavement , RAP) 結合起來生產冷拌瀝青。研究人員已經認識到兩個標準起著重要作用:(1) 瀝青膠泥的不同化學成分影響發泡性,以及 (2) 不同的發泡性對混合料的性能有影響。本研究的重點是探索瀝青混合料特性對發泡性的影響,三組來自不同的公司 AC-20 瀝青分別使用和不使用發泡劑,通過薄層色譜和火焰離子化檢測器 (Thin-Layer Chromatography and Flame Ionization Detection, TLC-FID) 方法分析膠泥的化學性質,以飽和成份、芳烴、樹脂和瀝青精 (Saturate, Aromatic, Resin and Asphaltene, SARA) 組分。根據振盪元素組(瀝青精和飽和成份)與擴散元素組(芳香族和樹脂)之間的比率來評價膠泥的穩定性,該比率稱為膠泥指數(Colloidal Index, CI),它用於評價膠泥的穩定性膠泥。本研究中膠泥發泡物性分析包括使用1.5%、2.0%、2.5%、3.0%、3.5%、4.0%和4.5%的含水量。本研究通過使用半衰期(Half Life, HL)和膨脹比(Expansion Ratio, ER)來評估所有膠泥的工作性,本研究還使用泡沫指數(Foam Index, FI)和氣泡表面積指數(Surface Area Index, SAI)來評估哪種膠泥具有更好的工作性。當使用發泡添加劑時,泡沫的性能在穩定性和膨脹性方面得到了極大的改善。結果表明,瀝青來源的差異決定了其發泡性,即使它們具有相同的黏度等級。發現了這種關係並且將更好的瀝青評價為具有更好穩定性和發泡指數的瀝青,發現 FI 變化是 CI 變化的 71%,同樣,由此產生的 FI 和 SAI 的相關性高達 88%。此關係值得未來更進一步深入研究.


    A combination of foamed asphalt binder and recycle asphalt pavement (RAP) to produce cold-mix asphalt have been developed in the past few years. The researcher had recognized two criteria that play important roles, (1) different chemical components of binder influence the foamability, and (2) different foamability has affection on the performance of the mixture. This study focuses on exploring the influence of asphalt binder properties on foamability. Three groups of AC-20 bitumen were taken from different companies. With and without the foaming agent (FA), the binder’s chemical properties were analyzed by Thin-Layer Chromatography and Flame Ionization Detector (TLC-FID) method to separate saturates, aromatics, resins, and asphaltenes (SARA) components. Ratio between the oscillated element (asphaltenes and saturates) and the diffuse element (aromatics and resins) to evaluate the stability of the binder called the colloidal index (CI). Physics foamability analysis in this study include water content of 1.5%, 2.0%, 2.5%, 3.0%, 3.5%, 4.0% and 4.5%. Half-life (HL) and expansion ratio (ER) used to evaluate the workability of all binders. Futhermore, foam index (FI) and bubble surface area index (SAI) evaluated to kown which binder has better workability. When using a foaming additive, the properties of the foam have been greatly improved in terms of stability and expansion. Initial results suggest that differences in bitumen origin determine its foamability even though they have the same viscosity grade. The relationship was found and better bitumen was evaluated as bitumen with better stability and foaming index. FI change was found to be 71% of the change in the CI. Similarly, the resulting FI and SAI reach up to 88% in terms of correlation. This relationship need further investigation for the future work.

    ABSTRACT i 摘要.. ii ACKNOWLEDGEMENT iii LIST OF TABLES vi LIST OF FIGURES vii 1. Introduction 1 1.1. Research background 1 1.2. Research objectives 2 1.3. Research scope 2 2. Literature review 4 2.1. Distribution of chemical components on bitumen 4 2.2. Effect of Foaming Bitumen factors 9 2.3. Mixture performance 14 3. Methodology 17 3.1. Methodology scope 17 3.2. Material and Laboratory performance 17 3.2.1. Aggregates physical properties tests 17 3.2.2. Asphalt binder chemical and physical properties tests 18 3.2.3 Foaming test 21 3.3. Mixture 25 3.4.1. Maximum specific gravity and density 25 3.4.2. Indirect tensile strength 26 4. Results and Discussions 29 4.1 Foaming test 29 4.2 Chemical component distribution 38 4.3 Mixture performance 41 4.3.1 Indirect tensile strength (IDT) 41 4.3.2 Binder Distribution Analysis 44 5. Conclusions and Recommendations 46 5.1 Conclusions 46 5.2 Recommendations 47 REFERENCES 48 APPENDIX A: TLC-FID CHROMATOGRAM 51 APPENDIX B: SPSS ANALYSIS 53 APPENDIX C: BINDER DISTRIBUTION 58

    1. Iwański, M. and A.J.P.E. Chomicz-Kowalska, Laboratory study on mechanical parameters of foamed bitumen mixtures in the cold recycling technology. 2013. 57: p. 433-442.
    2. Yang, C., et al., Investigation of physicochemical and rheological properties of SARA components separated from bitumen. 2020. 235: p. 117437.
    3. Fan, T., J.S.J.E. Buckley, and Fuels, Rapid and accurate SARA analysis of medium gravity crude oils. 2002. 16(6): p. 1571-1575.
    4. Islas-Flores, C., et al., Comparisons between open column chromatography and HPLC SARA fractionations in petroleum. 2005. 19(5): p. 2080-2088.
    5. Holý, M. and E.J.T.R.P. Remišová, Analysis of influence of bitumen composition on the properties represented by empirical and viscosity test. 2019. 40: p. 34-41.
    6. Read, J. and D. Whiteoak, The shell bitumen handbook. 2003: Thomas Telford.
    7. Mangiafico, S., et al., Relations between linear ViscoElastic behaviour of bituminous mixtures containing reclaimed asphalt pavement and colloidal structure of corresponding binder blends. 2016. 143: p. 138-145.
    8. Corbett, L.W.J.A.C., Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. 1969. 41(4): p. 576-579.
    9. Speight, J.G., The chemistry and technology of petroleum. 2014: CRC press.
    10. Ecker, A.J.P. and Coal, The Application of Iastrocan-Technique for Analysis of Bitumen. 2001. 43(1): p. 51-53.
    11. Lesueur, D.J.A.i.c. and i. science, The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. 2009. 145(1-2): p. 42-82.
    12. Gaestel, C., R. Smadja, and K.J.R.G.R.e.A. Lamminan, Contribution à la connaissance des propriétés des bitumes routiers. 1971. 466: p. 85-94.
    13. Gawel, I. Relationship between the Production Method and the Properties and Composition of Bitumens. in Proceedings of the 5th Eurobitume Congress, Stockholm, Sweden. 1993.
    14. Hesp, S.A., et al., Reversible aging in asphalt binders. 2007. 21(2): p. 1112-1121.
    15. Hsu, C.S. and P.R. Robinson, Practical advances in petroleum processing. Vol. 1. 2007: Springer Science & Business Media.
    16. Yang, P., et al., Application of solubility parameter theory in evaluating the aging resistance of paving asphalts. 2003. 21(11-12): p. 1843-1850.
    17. Jiang, C., et al., TLC–FID (Iatroscan) analysis of heavy oil and tar sand samples. 2008. 39(8): p. 1210-1214.
    18. Lian, H., J.-R. Lin, and T.F.J.F. Yen, Peptization studies of asphaltene and solubility parameter spectra. 1994. 73(3): p. 423-428.
    19. Homayuni, F., et al., An experimental investigation of viscosity reduction for pipeline transportation of heavy and extra-heavy crude oils. 2012. 30(18): p. 1946-1952.
    20. Branthaver, J., Binder Characterization and Evaluation, vol. 2: Chemistry. Washington, DC: Strategic Highway Research Program, National Research Council. 1993, Technical Report, SHRP-A-368.
    21. Rostler, F.J.B.M.A., Tars and P.N.Y.I. Publishers, Fractional composition: Analytical and functional significance. 1965: p. 151-222.
    22. Wang, J., et al., Modelling of rheological and chemical properties of asphalt binder considering SARA fraction. 2019. 238: p. 320-330.
    23. Ashoori, S., et al., The relationship between SARA fractions and crude oil stability. 2017. 26(1): p. 209-213.
    24. Alam, S., Z.J.C. Hossain, and b. materials, Changes in fractional compositions of PPA and SBS modified asphalt binders. 2017. 152: p. 386-393.
    25. Weigel, S., D.J.R.M. Stephan, and P. Design, Relationships between the chemistry and the physical properties of bitumen. 2018. 19(7): p. 1636-1650.
    26. Recycling, C.J.W.G., Wirtgen cold recycling technology. 2010.
    27. Ozturk, H.I. and M.E. Kutay, Effect of foamed binder characteristics on warm mix asphalt (WMA) performance. 2014.
    28. Jenkins, K., M. Van de Ven, and J. De Groot. Characterisation of foamed bitumen. in 7th Conference on asphalt pavements for Southern Africa. 1999.
    29. Fort, J., et al. I-55/I-57 Warm mix project in Missouri contractor’s WMA experience. in Proceedings of 2nd International Conference on warm mix asphalt. National Asphalt Pavement Association, Lanham, MD. www. asphaltpavement. org. 2011.
    30. Newcomb, D.E., et al., Properties of foamed asphalt for warm mix asphalt applications. 2015.
    31. Saleh, M.F.J.I.J.o.P.E., Effect of rheology on the bitumen foamability and mechanical properties of foam bitumen stabilised mixes. 2007. 8(2): p. 99-110.
    32. Ozturk, H.I. and M.E.J.T.R.R. Kutay, Sensitivity of nozzle-based foamed asphalt binder characteristics to foaming parameters. 2014. 2444(1): p. 120-129.
    33. Saleh, M.F.J.T.r.r., New Zealand experience with foam bitumen stabilization. 2004. 1868(1): p. 40-49.
    34. Crispino, M., et al., Effects of foam agents on foaming processes and physical and rheological properties of bitumens. 2014: p. 147-148.
    35. Kim, Y. and H.D.J.J.o.M.i.C.E. Lee, Development of mix design procedure for cold in-place recycling with foamed asphalt. 2006. 18(1): p. 116-124.
    36. Mohammad, L.N., et al., Louisiana experience with foamed recycled asphalt pavement base materials. 2003. 1832(1): p. 17-24.
    37. Martinez-Arguelles, G., et al., Laboratory investigation on mechanical performance of cold foamed bitumen mixes: bitumen source, foaming additive, fiber-reinforcement and cement effect. 2015. 93: p. 241-248.
    38. Wahhab, H.I.A.-A., et al., Study of road bases construction in Saudi Arabia using foam asphalt. 2012. 26(1): p. 113-121.
    39. He, G.-p., W.-g.J.C. Wong, and B. Materials, Laboratory study on permanent deformation of foamed asphalt mix incorporating reclaimed asphalt pavement materials. 2007. 21(8): p. 1809-1819.
    40. Kar, S.S., et al., Impact of binder on properties of foamed bituminous mixtures. 2017. 170(4): p. 194-204.
    41. Sharma, B., et al., Hydrocarbon group type analysis of petroleum heavy fractions using the TLC-FID technique. 1998. 360(5): p. 539-544.
    42. Loeber, L., et al., Bitumen in colloid science: a chemical, structural and rheological approach. 1998. 77(13): p. 1443-1450.
    43. Eleyedath, A., S.S. Kar, and A.K.J.I.J.o.P.E. Swamy, Modelling of expansion ratio and half-life of foamed bitumen using gene expression programming. 2021. 22(3): p. 369-381.
    44. design, A.A.J.A.g.f.t., c.o.b. emulsion, and f.b.s. materials, Technical guideline: Bitumen stabilised materials. 2009.
    45. Muthen, K.J.T.R.R., Foamed asphalt mixes-mix design procedure. 1998. 898: p. 290-296.
    46. Jenkins, K. and M.J.S. Van de Ven, Guidelines for the mix design and performance prediction of foamed bitumen mixes. 2001.
    47. Handbook, A.J.A.I., Lexington, Ky, Manual Series No. 4. 1989.
    48. InternationaL Roads Transport Union. Road Transport in the
    People’s Republic of China. Geneva., 2009.
    49. Tarrer, A. and V. Wagh, The effect of the physical and chemical characteristics of the aggregate on bonding. 1991, Strategic Highway Research Program, National Research Council Washington, DC.
    50. Otieno, M.N., J.W. Kaluli, and C.K.J.J.O.S.R.I.E. Kabubo, Effects of asphalt content and reclaimed asphalt pavement on the performance of cold mix asphalt. 2019. 5(1): p. 1-11.
    51. Swiertz, D., et al., Evaluation of laboratory coating and compaction procedures for cold mix asphalt. 2012. 81: p. 81.

    QR CODE
    :::