| 研究生: |
邱繼堯 Chi-Yao Chiu |
|---|---|
| 論文名稱: |
探討不鏽鋼316鍍銅共振腔於低溫下溫度表現 |
| 指導教授: | 陳永富 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 不鏽鋼熱傳導率 、熱傳導率 、銅熱傳導率 、不鏽鋼鍍銅 |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探測Axion(軸子)是需要在低溫(30mk)及強磁場(9T)的環境中量測,而量測的方式是藉由共振腔來讀取訊號源。因為在強磁場的環境下量測,我們必須要避免材料產生相對應的磁力來保護降溫設備不會在磁鐵失超時受到損害,所以在材料的選擇上必須要去避免使用大體積的銅,因此選擇使用不鏽鋼316來製作共振腔。但因為不鏽鋼的熱傳導比銅差非常多,導致降溫時間大幅增加,其解決辦法是在表面鍍上一層薄銅來增加熱傳導率。這篇論文主要是去探討在低溫環境下不鏽鋼鍍上銅後的熱傳導率提升了多少,用以協助了解在未來需要鍍上多厚的銅能滿足實驗需求,及利用鍍銅讓共振腔能夠達到更低溫的實驗環境來協助軸子量測。
Detecting Axions requires measurements in an environment with low temperatures (30 mK) and strong magnetic fields (9T). The detection method uses a resonant cavity to read the signal source. In such a strong magnetic field, it is important to avoid using materials that create magnetic forces, which could damage the cooling system if the magnet fails. Therefore, stainless steel 316 was chosen to build the resonant cavity instead of using large amounts of copper. However, stainless steel has much lower thermal conductivity compared to copper, which makes the cooling process take much longer. To solve this problem, a thin layer of copper was coated on the surface to improve thermal conductivity. This study focuses on how much the thermal conductivity of stainless steel improves after copper coating in low-temperature environments. It also aims to find out how thick the copper layer needs to be to meet experimental requirements and to help the resonant cavity reach lower temperatures for better Axion detection.
[1] M. Barucci, L. Lolli, L. Risegari, and G. Ventura. Measurement of thermal conductivity of the supports of cuore cryostat. Cryogenics, 48:166, 2008.
[2] M. Daal, Nicholas Zobrist, T. Adams, A. E. Kelly, S. D. Smith, S. T. Staggs, A. Suzuki, and J. Van Lanen. Properties of selected structural and flat flexible cabling materials for low temperature applications. Cryogenics, 93:68–76, 2018.
[3] L. Risegari, M. Barucci, E. Olivieri, E. Pasca, and G. Ventura. Measurement of the thermal conductivity of copper samples between 30 and 150 mk. Cryogenics, 44(12):875–878, 2004.
[4] R. Di Vora, D. Alesini, C. Braggio, G. Carugno, N. Crescini, D. D’Agostino, D. Di Gioacchino, P. Falferi, U. Gambardella, C. Gatti, G. Iannone, C. Ligi, A. Lombardi, G. Maccarrone, A. Ortolan, R. Pengo, A. Rettaroli, G. Ruoso, L. Ta↵arello, and S. Tocci. A high-q microwave dielectric resonator for axion dark matter haloscopes. Phys. Rev. Applied, 17(5):054013, 2022.
[5] M. Galeazzi, D. F. Bogorin, K. Prasai, Y. Uprety, and D. McCammon. Ther- mal properties of magnesium in the 60–150 mk range. Review of Scientific Instruments, 81(7):076105, 2010.
[6] Hsin Chang, Jing-Yang Chang, Yi-Chieh Chang, Yu-Han Chang, Yuan-Hann Chang, Chien-Han Chen, Ching-Fang Chen, Kuan-Yu Chen, Yung-Fu Chen, Wei-Yuan Chiang, et al. First results from the taiwan axion search experiment with a haloscope at 19.6 μev. Physical Review Letters, 129(11):111802, 2022.
[7] R. Khatiwada et al. Axion dark matter experiment: Detailed design and oper- ations. Review of Scientific Instruments, 92(12):124502, Dec 2021.
[8] I. Didschuns, A.L. Woodcraft, D. Bintley, and P.C. Hargrave. Thermal conduc- tance measurements of bolted copper to copper joints at sub-kelvin tempera- tures. Cryogenics, 44(5):293–299, 2004.
[9] N. Kellaris, M. Daal, M. Epland, M. Pepin, O. Kamaev, P. Cushman, E. Kramer, B. Sadoulet, N. Mirabolfathi, S. Golwala, and M. Runyan. Sub- kelvin thermal conductivity and radioactivity of some useful materials in low background cryogenic experiments. Journal of Low Temperature Physics, 176(3- 4):201–208, 2014.
[10] Frank Pobell. Matter and Methods at Low Temperatures. Springer, 3rd edition, 2007.