| 研究生: |
羅冠君 Kuan-Chun Lo |
|---|---|
| 論文名稱: |
基於和聲搜尋法與離散拉格郎日法之混合演算法於結構最佳化設計的研究 A HS-DLM Hybrid Searching Algorithm for Structural Optimization |
| 指導教授: |
莊德興
Der-Shin Juang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 200 |
| 中文關鍵詞: | 和聲搜尋法 、離散拉格郎日法 、混合高階啟發式演算法 、結構輕量化設計 |
| 外文關鍵詞: | discrete Lagrangian method, hybrid meta-heuristic algorithm, harmony search, optimum structural design |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要針對連續變數、離散變數、混合變數之最佳化設計問題,提出一種結合和聲搜尋法(HS)與離散拉格郎日法(DLM)的混合式高階啟發式演算法,即HS-DLM。HS為一隨機搜尋法,具有全域搜尋的能力,其概念簡單且不需調整過多參數。然而隨機搜尋使得HS在局部搜尋精確性不足之外,含有約束條件之處理方式也為其缺點之ㄧ。為改善此缺失,本文採用DLM演算法來補強HS的局部搜尋的能力並提供處理束制函數的機制,以改善整體的搜尋性能。DLM處理束制函數和強健的局部搜尋能力,將使HS-DLM獲得全域最佳解或全域近似最佳解的機率大增。藉由數個結構輕量化設計問題分別來探討其適用性,並檢討影響求解效率的相關參數。數值算例的結果顯示,HS-DLM較單獨使用HS穩定,且求解品質亦較佳。與文獻結果比較,亦顯示HS-DLM的求解品質不差,甚至更好。
This report is devoted to the presentation of a hybrid meta-heuristic algorithm, namely HS-DLM, for optimum design of structures with continuous, discrete and mixed variables. The HS (Harmony Search) has the ability in performing global search. However, the main deficiencies of HS are lacking accuracy of local search and the way of dealing with constrains. To overcome these drawbacks, DLM is proposed to enhance the local search capacity of HS and repair violated constrains for the problem such that the probability of obtaining global optimum for the HS-DLM can be increased. More than ten typical structures studied in the literature were used to validate the effectiveness of the algorithm. The comparative studies of the HS-DLM against other optimization algorithms are reported to show the performance and the solution quality of the proposed HS-DLM algorithm. It shows that the performance of HS-DLM algorithm is reliable, and the solution quality of the optimum structural design problems studied in the literature is comparable to other meta-heuristic methods.
[1] Pedersen, P., “Optimal Joint Positions for Space Trusses,” Journal of the Structural Division, ASCE, Vol. 99, No. 12, pp. 2459-2475 (1973).
[2] Bremicker, M., Papalambros, P. Y., and Loh, H. T., “Solution of Mixed-Discrete Structural Optimization Problems with a New Sequential Linearization Algorithm,” Computers and Structures, Vol. 37, No. 4, pp. 451-461 (1990).
[3] Geem, Z. W., Kim, J. H., and Loganathan, G.V., “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, Vol. 76(2), pp.60-68(2001).
[4] Wah, B. W. and Shang, Y., A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability Problems, Proc. DIMACS workshop on Satisfiability Problems, Theory and Applications, Du, D. Z., J., and Pardalos, P., AMS (1996).
[5] Metropolis, N., Rosenbluth, A. W., Teller, A H., and Teller, E., “Equation of State Calculation by Fast Computing Machines,” Journal of Chemical Physics, Vol. 21, No. 6, pp. 1087-1092(1953).
[6] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., “Optimization by Simulated Annealing,” Science, Vol. 220, No. 4598, pp.671-680 (1983).
[7] Aarts, E. H. L. and Korst, J. H. M., Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing, John Wiley & Sons, New York (1989).
[8] Holland, J. H., “Outline for a Logical Theory of Adaptive System,” Journal of the Association for Computing Machinert, Vol. 3, No. 3, pp. 297-314 (1962).
[9] Davis, J. S., Handbook of Genetic Algorithms, Van Nostrand Reinhold (1991).
[10] Whitley, D., “The Genitor Algorithm and Seiection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best,” Proceeding of the Third International Conference on Genetic Algorithms, J. D. Schaffer, pp. 116-121, Morgan Kaufmann, San Mateo, California (1989).
[11] Wu, S. J. and Chow, P. T., “The Application of Genetic Algorithms to Discrete Optimation Problems,” Journal of the Chinese Society of Mechanical Engineers, Vol. 16, No. 6, pp. 587-598(1995).
[12] Wu, S. J. and Chow, P. T., “Integrated Discrete and Configuration Optimization of Trusses Using Genetic Algorithms,” Computers and Structures, Vol. 55, No. 4, pp. 695-702 (1995).
[13] De Jong, K. A., “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,” Ph.D Dissertation, University of Michigan, Dissertation Abstracts International, Vol. 36, No. 10, 5140B. (University Microfilms No. 76-9381) (1975).
[14] Kennedy, J. and Eberhart, R. C., “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks, Vol. IV, pp. 1942-1948 (1995).
[15] Eberhart, R. C. and Kennedy, J., “A New Optimizer Using Particle Swarm Theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43 (1995).
[16] 胡曉輝,「粒子群優化算法介紹」, <http://web.ics.purdue.edu/
~hux/tutorials.shtml>,民國91年4月。
[17] Krink, T., Vesterstorm J. S., and Riget, J.l “Particle Swarm Optimization with Spatial Particle Extension,” Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 1, pp. 489-494 (2002).
[18] AL-Kazemi, B. and Mohan, C. K., “Multi-Phase Generalization of the particle Swarm Optimization Algorithm,” Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 1, pp. 489-494 (2002).
[19] Hu, X.and Eberhart, R. C., “Adaptive Particle Swarm Optimization: Detection and Response to Dynamic System,” Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1666-1670 (2002).
[20] Kim, M., “Solving Traveling Salesman Problem Using Harmony Search,” ENCE 677, Fall (2003).
[21] Geem, Z. W., Kim, J. H., and Loganathan, G.V., “Harmony search optimization: Application to pipe network design,” Int. J. Modell. Simulation, Vol. 22(2), pp. 125-133 (2002).
[22] Juang, D. S., Wu, Y. T., and Chang, W. T., “Optimum design of truss structures using discrete Lagrangian method,” Journal of the Chinese Institute of Engineers, Vol. 26(5), pp. 635-646 (2003).
[23] Juang, D. S., “Integrated configuration and discrete sizing optimization of truss structures using discrete Lagrangian method,” 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, Aug. 30-Sept. 1, 2004, Paper No. AIAA-2004-4535 (2004).
[24] Wu, Z., “The Discrete Lagrangian Theory ans its Application to Solve Nonlinear Discrete Constrain Optimization Problems,” Master Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign (1998)
[25] 莊德興,「桁架之形狀與離散斷面的整合輕量化設計」,第七屆結構工程研討會,桃園大溪 (2004)。
[26] Wang, D., Zhang, W. H., and Jiang, J. S., “Truss Shape Optimization with Multiple Displacement Constraints,” Computer Methods Application Mech. Engrg., Vol. 191, No. 33, pp. 3597-3612 (2002).
[27] Arora, J. S., Introduction to Optimum Design, McGraw-Hill, (1989).
[28] 莊德興、吳郎益,「離散拉格郎日法於群樁基礎低價化設計之應用」,中國土木水利學刊,第十五卷,第二期,第93-104頁 (2003)。
[29] 藍志浩,「考慮動態反應束制及關連性離散變數之結構最佳化設計」,碩士論文,國立中央大學土木工程研究所,中壢(2004)。
[30] 吳泳達,「離散拉朗日法於結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢(2003)。
[31] 張慰慈,「DLM-GA混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢(2003)。
[32] 鐘明劍,「樁基礎最佳化設計之研究」,博士論文,國立中央大學土木工程研究所,中壢(2006)。
[33] Rajeev, S. and Krishnamoorthy, C. S., “Discrete Optimization of Structures Using Genetic Algorithms,” Journal of Structural Engineering, ASCE., Vol. 118, pp. 1233-1250 (1992).
[34] Cai, J. and Thierauf, G., “Discrete Optimization of Structures Using an Improved Penalty Function Method,” Engineering Optimization, Vol. 21, pp. 293-306 (1993).
[35] Coello, C. A., Rudnick, M., and Christiansen, A. D., “Using Genetic Algorithms for Optimal Design of Trusses,” Proc. Int. Conf. on Tools with Artifical Intelligence, IEEE, pp. 88-94 (1994)
[36] Galante, M., “Genetic Algorithms as an Approach to Optimize Real-World Trusses,” International Journal for Numerical Methods in Engineering, Vol. 39, pp. 361-382 (1996).
[37] Soh, C. K. and Yang, Y., “Genetic Programming?based Approach for Structural Optimization,” Journal of Computing in Civil Engineering, Vol. 14, No. 1(2000).
[38] Yang, J. P., “Development of Genetic Algorithm Based Approach for Structural Optimization,” PhD thesis, Nanyang Technological University, Singapore(1996).
[39] Wang, D., Zhang, W. H., and Jiang, J. S., “Truss Shape Optimizati
-on with Multiple Displacement Constraints,” Computer Methods
In Applied Mechanics and Engineering, Vol. 191, No. 33, pp. 3597
-3612(2002).
[40] Deb, K., Gulati, S., and Chakrabarti, S., “Optimal Truss-Structure Design Using Real-Coded Genetic Algorithms,” Proceedings of the Third Annual Conference, pp. 479-486(1998).
[41] 莊玟珊,「PSO-SA混合搜尋法與其他結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢(2007)。
[42] Hajela, P., Lee, E., and Lin, C. Y., “Genetic Algorithms in Structural Topology Optimization,” Topology Optimization of Structures, pp. 117-133(1993).
[43] Kavile, D. and Powell, G. H., “Efficient Reanalysis of Modified Structures,” Journal of the Structural Division, ASCE., Vol. 97, No. 1, pp. 377-392 (1971).
[44] Salajegheh, E. and Vanderplaats, G. N., “Efficient Optimum Design of Structures with Discrete Design Variables,” Space Structures, Vol. 8, pp. 199-208 (1993).
[45] Groenwold, A. A. and Stander, N., “Optimal Discrete Sizing of Truss Structures Subject to Buckling Constraints,” Structural Optimization, Vol. 14, pp. 71-80 (1997).
[46] Groenwold, A. A., Stander, N., and Snyman, J. A., “A Regional Genetic Algorithms for the Discrete Optimal Design of Truss Structures,” International Journal for Numerical Methods in Engineering, Vol. 44, No. 6, pp. 749-766 (1999).
[47] Camp, C., Pezeshk, S., and Cao, G., “Optimized Design of Two-Dimensional Structures Using a Genetic Algorithm,” Journal of Structural Engineering, ASCE., Vol. 124, No. 5, pp. 551-559 (1998).
[48] Nanakorn, P. and Meesomklin, K., “An Adaptive Penalty Function in Genetic Algorithms for Structural Design Optimiztion,” Computers and Structures, Vol. 79, pp. 2527-2539 (2001).
[49] Chai, S. and Sun, H. C., “A Relative Differnece Quotient Algorithm for Discrete Optimization,” Structural Optimization, Vol. 12, No. 1, pp. 46-56 (1996).
[50] Rajeev, S. and Krishnamoorthy, C. S., “Genetic Algorithms-based Methodologies for Design Optimization of Trusses,” Journal of Structural Engineering, ASCE, Vol. 123, No. 3, pp. 350-358 (1997).
[51] Hasancebi, O. and Erbatur, F., “Layout Optimization of Trusses Using Improved GA Methodlogies,” ACTA Mechanica, Vol. 146, pp. 87-107(2001).
[52] Kaveh, A. and Kalatjari, V., “Size/Geometry Optimization of Trusses by the Force Method and Genetic Algotithm,” Zeitschrift fur Angewandte Mathematik and Mechanics, Vol. 84, No. 5, pp. 347-357(2004).
[53] Thierauf, G. and Cai, J., “Parallel Evolution Strategy for Solving Structural Optimization,” Engineering Structures, Vol. 19, No. 4, pp. 318-324 (1997).