| 研究生: |
游博丞 Bo-Cheng You |
|---|---|
| 論文名稱: |
超音波水解生物污泥機制探討 An investigation on the mechanism of ultrasonic hydrolysis of waste activated sludge |
| 指導教授: |
莊順興
Shun-Hsing Chuang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 廢棄活性污泥 、超音波 、階段性水解 、碳源 、脫硝 、動力學分析 |
| 外文關鍵詞: | Waste activated sludge, Ultrasound, Stepwise hydrolysis, Carbon source, Denitrification, Kinetics analysis |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著都市發展,污水廠建設快速成長,但廢棄活性污泥(Waste Activated Sludge , WAS)為都市污水處理之必然產物,其處理及廢棄成本佔污廢水處理成本的60%,且清除成本隨衛生掩埋處理容積減少,有日益高漲之勢。而污泥水解技術不僅可加強污泥減量,改善脫水性,且可回收可用資源,並提升廢水處理單元性能。污泥水解主要透過破壞污泥絮凝物及細胞,使胞內有機物及營養物質由固相轉往液相,其中又以有機物增溶受人關注,這對於需添加碳源之脫氮程序無疑是一值得評估之選項。
利用DNA、磷酸、SCOD等重要水質參數檢測,建置超音波三階段崩解污泥細胞之時間序列。超音波水解生物污泥依比能量輸入可分為三個階段,0 - 25.2 kWs/g TS為絮凝物剝離,25.2 – 36 kWs/g TS為細胞壁破壞,36 kWs/g TS後為細胞分解,而有超過50%的蛋白質、75%的多糖及70%的SCOD位於細胞壁破壞階段後才釋出,表示細胞大部分的有機物質蘊藏在細胞內。
本研究以絮凝物剝離及細胞分解階段水解產物作為碳源進行脫硝,其最佳C/N比分別為3及6,比脫硝速率分別為1.17、1.57 mg N /g VSS‧hr,且細胞分解階段產物在脫硝潛力及異營缺氧增殖率較絮凝物剝離階段產物更佳,其主要因素為細胞分解階段產物其蛋白質含量比例較高,蛋白質為微生物最優先利用之有機物質。另外利用細胞分解階段產物進行脫硝雖在高碳氮比下具有較高的脫硝速率,但放流水的SCOD在C/N大於4時,其殘留濃度須被考慮,且須防範來自蛋白質被微生物降解所造成的氨氮二次污染問題。
With urban development, the construction of sewage treatment plants is growing rapidly, but Waste Activated Sludge (WAS) is an inevitable product of urban sewage treatment, and its treatment and disposal costs account for 60% of the sewage and wastewater treatment costs, and the removal cost varies with sanitation. The volume of landfill disposal is decreasing, and there is an increasing trend. The sludge hydrolysis technology can not only enhance sludge reduction, improve dewaterability, but also recover available resources and improve the performance of wastewater treatment units. The hydrolysis of sludge mainly destroys the flocs and cells of the sludge, so that the intracellular organic matter and nutrients are transferred from the solid phase to the liquid phase. Among them, the solubilization of organic matter attracts attention. This is undoubtedly a denitrification process that requires the addition of a carbon source. An option worth evaluating.
Using DNA, phosphoric acid, SCOD and other important water quality parameters to detect, build a time series of ultrasonic three-stage disintegration of sludge cells. Ultrasonic hydrolysis of biological sludge can be divided into three stages according to the specific energy input, 0-25.2 kWs/g TS is floc stripping, 25.2-36 kWs/g TS is cell wall destruction, and 36 kWs/g TS is cell decomposition. More than 50% of the protein, 75% of the polysaccharide and 70% of the SCOD are released after the cell wall destruction stage, which means that most of the organic matter of the cell is contained in the cell.
In this study, the hydrolysate from the floc stripping and cell decomposition stages was used as a carbon source for denitration. The best C/N ratios were 3 and 6, and the specific denitration rates were 1.17 and 1.57 mg N /g VSS‧hr, respectively. The denitrification potential and heterogeneous hypoxic proliferation rate of the cell decomposition stage product is better than that of the floc stripping stage product. The main factor is that the cell decomposition stage product has a higher protein content ratio, and protein is the most preferential organic substance used by microorganisms. In addition, although the products of the cell decomposition stage are used for denitrification, although the denitrification rate is high at a high carbon-nitrogen ratio, when the C/N of the discharged water is greater than 4, the residual concentration of SCOD must be considered, and it must be prevented from being caused by protein. The secondary pollution of ammonia nitrogen caused by microbial degradation.
1. 朱敬平, 胡雁翠, 許國恩, 於望聖, 顏慧敏, 孫世勤 and 林志安 (2016). "我國都市污水處理廠下水污泥資源再利用特性分析." 中興工程(132): 9-16.
2. Andrews, N., J. Wills, and C. Müller, Assessment of technology advancements for future energy reduction. 2015: Water Environment Research Foundation.
3. Verstrynge, E., H. Pfeiffer, and M. Wevers, A novel technique for acoustic emission monitoring in civil structures with global fiber optic sensors. Smart materials and structures, 2014. 23(6): p. 065022.
4. Barron, K. Detection of fracture initiation in rock specimens by the use of a simple ultrasonic listening device. in International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1971. Elsevier.
5. Ashokkumar, M., Ultrasonic synthesis of functional materials, in Ultrasonic synthesis of functional materials. 2016, Springer. p. 17-40.
6. Henglein, A., TJ Mason, JP Lorimer: Sonochemistry (Theory, Applications and Uses of Ultrasound in Chemistry), Ellis Horwood Limited. Chichester, and John Wiley and Sons, New York 1988. 252 Seiten, Preis:£ 38.50. 1989, Wiley Online Library.
7. Suslick, K.S., Sonochemistry. science, 1990. 247(4949): p. 1439-1445.
8. Minnaert, M., XVI. On musical air-bubbles and the sounds of running water. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1933. 16(104): p. 235-248.
9. Leighton, T., The Acoustic Bubble.| Academic. Press, London, 1994: p. 234-243.
10. Yasui, K., Single-bubble sonoluminescence from noble gases. Physical Review E, 2001. 63(3): p. 035301.
11. Didenko, Y.T., W.B. McNamara III, and K.S. Suslick, Molecular emission from single-bubble sonoluminescence. nature, 2000. 407(6806): p. 877-879.
12. McNamara, W.B., Y.T. Didenko, and K.S. Suslick, Sonoluminescence temperatures during multi-bubble cavitation. nature, 1999. 401(6755): p. 772-775.
13. Doktycz, S.J. and K.S. Suslick, Interparticle collisions driven by ultrasound. Science, 1990. 247(4946): p. 1067-1069.
14. Crum, L., Sonoluminescence, sonochemistry, and sonophysics. The Journal of the Acoustical Society of America, 1994. 95(1): p. 559-562.
15. Young, F.R., Sonoluminescence. 2004: CRC press.
16. Rittman, B. and P. McCarty, Environmental biotechnology: principles & applica-tions. USA: McGrawHill. 2001, Inc.
17. Canales, A., A. Pareilleux, J. L. Rols and A. Huyard (1994). "Decreased sludge production strategy for domestic wastewater treatment." Water Science and Technology 30(8): 97.
18. Xu, X., D. Cao, Z. Wang, J. Liu, J. Gao, M. Sanchuan and Z. Wang (2019). "Study on ultrasonic treatment for municipal sludge." Ultrasonics sonochemistry 57: 29-37.
19. Langone, M., R. Ferrentino, G. Trombino, D. W. DE PUISEAU, G. ANDREOTTOLA, E. C. RADA and M. RAGAZZI (2015). "Application of a novel hydrodynamic cavitation system in wastewater treatment plants." UPB Scientific Bulletin, Series D 77(1): 225-234.
20. Christensen, M. L., K. Keiding, P. H. Nielsen and M. K. Jørgensen (2015). "Dewatering in biological wastewater treatment: a review." Water research 82: 14-24.
21. 朱敬平, 污泥膠羽結構, 脫水性, 水份分佈, 與熱分解特性之硏究. 1999, National Taiwan University Graduate Institute of Chemical Engineering.
22. Frølund, B., R. Palmgren, K. Keiding and P. H. Nielsen (1996). "Extraction of extracellular polymers from activated sludge using a cation exchange resin." Water research 30(8): 1749-1758.
23. Chen, Y., H. Yang, and G. Gu, Effect of acid and surfactant treatment on activated sludge dewatering and settling. Water Research, 2001. 35(11): p. 2615-2620.
24. Jin, B., B.-M. Wilén, and P. Lant, Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge. Chemical Engineering Journal, 2004. 98(1-2): p. 115-126.
25. Urbain, V., J. Block, and J. Manem, Bioflocculation in activated sludge: an analytic approach. Water research, 1993. 27(5): p. 829-838.
26. Sheng, G.-P., H.-Q. Yu, and X.-Y. Li, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology advances, 2010. 28(6): p. 882-894.
27. Nielsen, P.H. and A. Jahn, Extraction of EPS, in Microbial extracellular polymeric substances. 1999, Springer. p. 49-72.
28. Liu, Y. and H.H. Fang, Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. 2003.
29. Nielsen, Per Halkjær, Aaron Marc Saunders, Aviaja Anna Hansen, Poul Larsen, and Jeppe Lund Nielsen. 2012. 'Microbial communities involved in enhanced biological phosphorus removal from wastewater—a model system in environmental biotechnology', Current opinion in biotechnology, 23: 452-59.
30. Bingjie, N., X. Deqian, and L. Shaogen, An important impact substance of extracellular polymers (EP). Environ. Sci. Technol., 2006. 29(3): p. 108-110.
31. Gonze, E., S. Pillot, E. Valette, Y. Gonthier and A. Bernis (2003). "Ultrasonic treatment of an aerobic activated sludge in a batch reactor." Chemical Engineering and Processing: Process Intensification 42(12): 965-975.
32. Li, D. and H. Xi, Layered extraction and adsorption performance of extracellular polymeric substances from activated sludge in the enhanced biological phosphorus removal process. Molecules, 2019. 24(18): p. 3358.
33. Alberts, B., A. Johnson, and J. Lewis, Molecular biology of the cell. 4th. New York: Garland Science; 2002. Helper T Cells and Lymphocyte Activation.
34. Bretscher, M.S. and M.C. Raff, Mammalian plasma membranes. Nature, 1975. 258(5530): p. 43-49.
35. Hetzer, M.W., The nuclear envelope. Cold Spring Harbor perspectives in biology, 2010. 2(3): p. a000539.
36. Shaw, P. and J. Brown, Nucleoli: composition, function, and dynamics. Plant physiology, 2012. 158(1): p. 44-51.
37. Spirin, A., Ribosomes. 2013.
38. Goodsell, D.S., Mitochondrion. Biochemistry and Molecular Biology Education, 2010. 38(3): p. 134-140.
39. Parkin, G.F. and W.F. Owen, Fundamentals of anaerobic digestion of wastewater sludges. Journal of environmental engineering, 1986. 112(5): p. 867-920.
40. Li, Y., Y. Hu, G. Wang, W. Lan, J. Lin, Q. Bi, H. Shen and S. Liang (2014). "Screening pretreatment methods for sludge disintegration to selectively reclaim carbon source from surplus activated sludge." Chemical Engineering Journal 255: 365-371.
41. Salsabil, M. R., J. Laurent, M. Casellas and C. Dagot (2010). "Techno-economic evaluation of thermal treatment, ozonation and sonication for the reduction of wastewater biomass volume before aerobic or anaerobic digestion." Journal of Hazardous Materials 174(1-3): 323-333.
42. Neyens, E., J. Baeyens, and C. Creemers, Alkaline thermal sludge hydrolysis. Journal of hazardous materials, 2003. 97(1-3): p. 295-314.
43. Fang, W., P. Zhang, G. Zhang, S. Jin, D. Li, M. Zhang and X. Xu (2014). "Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization." Bioresource technology 168: 167-172.
44. Zhang, P., G. Zhang, and W. Wang, Ultrasonic treatment of biological sludge: floc disintegration, cell lysis and inactivation. Bioresource technology, 2007. 98(1): p. 207-210.
45. Liu, H., Y. Wang, L. Wang, T. Yu, B. Fu and H. Liu (2017). "Stepwise hydrolysis to improve carbon releasing efficiency from sludge." Water research 119: 225-233.
46. Yang, D., X. Dai, L. Song, L. Dai and B. Dong (2019). "Effects of stepwise thermal hydrolysis and solid-liquid separation on three different sludge organic matter solubilization and biodegradability." Bioresource technology 290: 121753.
47. Wang, J., H. Li, Y. Liu, C. Zhong, Z. Luo and D. Li (2018). "Lysis characteristics and mechanism of excess sludge degraded by ozone and ultrasonic treatment." Environmental technology.
48. Tiehm, A., K. Nickel, M. Zellhorn and U. Neis (2001). "Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization." Water research 35(8): 2003-2009.
49. Khanal, S. K., D. Grewell, S. Sung and J. Van Leeuwen (2007). "Ultrasound applications in wastewater sludge pretreatment: a review." Critical Reviews in Environmental Science and Technology 37(4): 277-313.
50. Wang, F., Y. Wang, and M. Ji, Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration. Journal of hazardous materials, 2005. 123(1-3): p. 145-150.
51. Ruiz Hernando, M., Effect of ultrasound, low-temperature thermal and alkali treatments on physicochemical and biological properties of waste activated sludge. 2015, Universitat de Barcelona.
52. Pitt, W.G. and S.A. Ross, Ultrasound increases the rate of bacterial cell growth. Biotechnology progress, 2003. 19(3): p. 1038-1044.
53. Lin, L. and J. Wu, Enhancement of shikonin production in single‐and two‐phase suspension cultures of Lithospermum erythrorhizon cells using low‐energy ultrasound. Biotechnology and bioengineering, 2002. 78(1): p. 81-88.
54. Zhang, G., J. He, P. Zhang and J. Zhang (2009). "Ultrasonic reduction of excess sludge from activated sludge system II: Urban sewage treatment." Journal of Hazardous Materials 164(2-3): 1105-1109.
55. Wu, S., M. Zheng, Q. Dong, Y. Liu and C. Wang (2018). "Evaluating the excess sludge reduction in activated sludge system with ultrasonic treatment." Water Science and Technology 77(9): 2341-2347.
56. Bougrier, C., H. Carrère, and J.P. Delgenes, Solubilisation of waste-activated sludge by ultrasonic treatment. Chemical Engineering Journal, 2005. 106(2): p. 163-169.
57. Chu, C., D. Lee, B.-V. Chang, C. You and J. Tay (2002). "“Weak” ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids." Water research 36(11): 2681-2688.
58. Van Leeuwen, J., B. Akin, S. K. Khanal, S. Sung, D. Grewell and J. van Leeuwen (2006). "Ultrasound pre-treatment of waste activated sludge." Water Science and Technology: Water Supply 6(6): 35-42.
59. Khanal, SK, H Isik, S Sung, and J Van Leeuwen. 2006. "Effects of ultrasound pretreatment on aerobic digestibility of thickened waste activated sludge." In Proceedings of Seventh Specialized Conference on Small Water and Wastewater Systems, March, 7-10.
60. Zielewicz, E., Indicators of ultrasonic disintegration of sewage sludge. Polish Journal of Environmental Studies, Series of monographs, 2010. 2: p. 268-272.
61. Wang, X., Z. Qiu, S. Lu and W. Ying (2010). "Characteristics of organic, nitrogen and phosphorus species released from ultrasonic treatment of waste activated sludge." Journal of hazardous materials 176(1-3): 35-40.
62. Kampas, P., S. A. Parsons, P. Pearce, S. Ledoux, P. Vale, J. Churchley and E. Cartmell (2007). "Mechanical sludge disintegration for the production of carbon source for biological nutrient removal." Water research 41(8): 1734-1742.
63. SHI, X.-j., W.-j. LIANG, Y.-l. LI, Y.-l. LI and R. SHI (2017). "Progress in Application of Ultrasound Technique in Municipal Sludge Treatment." Sichuan Environment: 01.
64. Sangave, P.C., P.R. Gogate, and A.B. Pandit, Ultrasound and ozone assisted biological degradation of thermally pretreated and anaerobically pretreated distillery wastewater. Chemosphere, 2007. 68(1): p. 42-50.
65. Rittmann, B.E. and P.L. McCarty, Environmental biotechnology: principles and applications. 2001: McGraw-Hill Education.
66. Flemming, H.-C. and J. Wingender, Relevance of microbial extracellular polymeric substances (EPSs)-Part I: Structural and ecological aspects. Water science and technology, 2001. 43(6): p. 1-8.
67. Grűbel, K. and A. Machnicka, Infrared wave analysis after hydrodynamic and acoustic cavitation as effective method of confirming sewage sludge destruction. Journal of Environmental Science and Health, Part A, 2014. 49(1): p. 101-107.
68. Feng, X., J. Deng, H. Lei, T. Bai, Q. Fan and Z. Li (2009). "Dewaterability of waste activated sludge with ultrasound conditioning." Bioresource technology 100(3): 1074-1081.
69. Yin, X., P. Han, X. Lu and Y. Wang (2004). "A review on the dewaterability of bio-sludge and ultrasound pretreatment." Ultrasonics Sonochemistry 11(6): 337-348.
70. Tiehm, A., K. Nickel, and U. Neis, The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water science and technology, 1997. 36(11): p. 121-128.
71. Bottero, G. Villemin, V. Urbain and J. Manem (1995). "Chemical and structural (2D) linkage between bacteria within activated sludge flocs." Water research 29(7): 1639-1647.
72. Higgins, M.J. and J.T. Novak, Characterization of exocellular protein and its role in bioflocculation. Journal of environmental engineering, 1997. 123(5): p. 479-485.
73. Devlin, D., S. Esteves, R. Dinsdale and A. Guwy (2011). "The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge." Bioresource Technology 102(5): 4076-4082.
74. Erden, G. and A. Filibeli, Ultrasonic pre‐treatment of biological sludge: consequences for disintegration, anaerobic biodegradability, and filterability. Journal of Chemical Technology & Biotechnology, 2010. 85(1): p. 145-150.
75. Salsabil, M. R., A. Prorot, M. Casellas and C. Dagot (2009). "Pre-treatment of activated sludge: Effect of sonication on aerobic and anaerobic digestibility." Chemical Engineering Journal 148(2-3): 327-335.
76. Braguglia, C., M. Gagliano, and S. Rossetti, High frequency ultrasound pretreatment for sludge anaerobic digestion: effect on floc structure and microbial population. Bioresource technology, 2012. 110: p. 43-49.
77. Cherchi, C., A. Onnis‐Hayden, I. El‐Shawabkeh and A. Z. Gu (2009). "Implication of using different carbon sources for denitrification in wastewater treatments." Water Environment Research 81(8): 788-799.
78. Park, K., J. Lee, K. Song and K. Ahn (2011). "Ozonolysate of excess sludge as a carbon source in an enhanced biological phosphorus removal for low strength wastewater." Bioresource technology 102(3): 2462-2467.
79. Kampschreur, M. J., H. Temmink, R. Kleerebezem, M. S. Jetten and M. C. van Loosdrecht (2009). "Nitrous oxide emission during wastewater treatment." Water research 43(17): 4093-4103.
80. 李珮芸 and 林志高, 外加碳源對生物薄膜反應器處理低碳氮比高科技業廢水之影響. 2011.
81. Christensson, M., E. Lie, and T. Welander, A comparison between ethanol and methanol as carbon sources for denitrification. Water Science and Technology, 1994. 30(6): p. 83.
82. Her, J.-J. and J.-S. Huang, Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresource technology, 1995. 54(1): p. 45-51.
83. Zubrowska-Sudol, M. and J. Walczak, Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge. Water Research, 2015. 76: p. 10-18.
84. Yan, P., F. Ji, J. Wang, J. Fan, W. Guan and Q. Chen (2013). "Evaluation of sludge reduction and carbon source recovery from excess sludge by the advanced Sludge reduction, Inorganic solids separation, Phosphorus recovery, and Enhanced nutrient Removal (SIPER) wastewater treatment process." Bioresource technology 150: 344-351.
85. Baytshtok, V., H. Lu, H. Park, S. Kim, R. Yu and K. Chandran (2009). "Impact of varying electron donors on the molecular microbial ecology and biokinetics of methylotrophic denitrifying bacteria." Biotechnology and bioengineering 102(6): 1527-1536.
86. Meng, X., D. Liu, K. Yang, X. Song, G. Zhang, J. Yu, J. Zhang, Y. Tang and K. Li (2013). "A full scale anaerobic–anoxic–aerobic process coupled with low-dose ozonation for performance improvement." Bioresource technology 146: 240-246.
87. Huysmans, A., M. Weemaes, P. A. Fonseca and W. Verstraete (2001). "Ozonation of activated sludge in the recycle stream." Journal of Chemical Technology & Biotechnology 76(3): 321-324.
88. Kampas, P., S. A. Parsons, P. Pearce, S. Ledoux, P. Vale, E. Cartmell and A. Soares (2009). "An internal carbon source for improving biological nutrient removal." Bioresource Technology 100(1): 149-154.
89. Soares, A., P. Kampas, S. Maillard, E. Wood, J. Brigg, M. Tillotson, S. A. Parsons and E. Cartmell (2010). "Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal." Journal of hazardous materials 175(1-3): 733-739..
90. Xu, Z., X. Dai, and X. Chai, Effect of influent pH on biological denitrification using biodegradable PHBV/PLA blends as electron donor. Biochemical Engineering Journal, 2018. 131: p. 24-30.
91. Elefsiniotis, P. and D. Li, The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochemical Engineering Journal, 2006. 28(2): p. 148-155.
92. Guo, L., Y. Guo, M. Sun, M. Gao, Y. Zhao and Z. She (2018). "Enhancing denitrification with waste sludge carbon source: the substrate metabolism process and mechanisms." Environmental Science and Pollution Research 25(13): 13079-13092.
93. Peng, Y.-Z., M. Yong, and S.-Y. Wang, Denitrification potential enhancement by addition of external carbon sources in a pre-denitrification process. Journal of Environmental Sciences, 2007. 19(3): p. 284-289.
94. Walczak, J. and M. Zubrowska-Sudol, The rate of denitrification using hydrodynamically disintegrated excess sludge as an organic carbon source. Water Science and Technology, 2018. 77(9): p. 2165-2173.
95. Zhang, H., J. Jiang, M. Li, F. Yan, C. Gong and Q. Wang (2016). "Biological nitrate removal using a food waste-derived carbon source in synthetic wastewater and real sewage." Journal of environmental management 166: 407-413.
96. Xu, Z. and X. Chai, Effect of weight ratios of PHBV/PLA polymer blends on nitrate removal efficiency and microbial community during solid-phase denitrification. International Biodeterioration & Biodegradation, 2017. 116: p. 175-183.
97. Akunna, J.C., C. Bizeau, and R. Moletta, Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Water research, 1993. 27(8): p. 1303-1312.
98. Shao, M., L. Guo, Z. She, M. Gao, Y. Zhao, M. Sun and Y. Guo (2019). "Enhancing denitrification efficiency for nitrogen removal using waste sludge alkaline fermentation liquid as external carbon source." Environmental Science and Pollution Research 26(5): 4633-4644.
99. Sage, M., G. Daufin, and G. Gésan-Guiziou, Denitrification potential and rates of complex carbon source from dairy effluents in activated sludge system. Water research, 2006. 40(14): p. 2747-2755.
100. Zhang, Y., X. C. Wang, Z. Cheng, Y. Li and J. Tang (2016). "Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment." Chemosphere 144: 689-696.
101. Kujawa, K. and B. Klapwijk, A method to estimate denitrification potential for predenitrification systems using NUR batch test. Water Research, 1999. 33(10): p. 2291-2300.
102. Senthilkumar, N. P. Vichare and A. B. Pandit (2001). "Cavitation reactors: efficiency assessment using a model reaction." AIChE journal 47(11): 2526-2538.
103. Cai, M.-Q., J.-Q. Hu, G. Wells, Y. Seo, R. Spinney, S.-H. Ho, D. D. Dionysiou, J. Su, R. Xiao and Z. Wei (2018). "Understanding mechanisms of synergy between acidification and ultrasound treatments for activated sludge dewatering: from bench to pilot–scale investigation." Environmental science & technology 52(7): 4313-4323.
104. Rai, C. L., G. Struenkmann, J. Mueller and P. G. Rao (2004). "Influence of ultrasonic disintegration on sludge growth reduction and its estimation by respirometry." Environmental science & technology 38(21): 5779-5785.
105. Cho, S.-K., H.-S. Shin, and D.-H. Kim, Waste activated sludge hydrolysis during ultrasonication: two-step disintegration. Bioresource technology, 2012. 121: p. 480-483.
106. Chang, T.-C., S.-J. You, R. A. Damodar and Y.-Y. Chen (2011). "Ultrasound pre-treatment step for performance enhancement in an aerobic sludge digestion process." Journal of the Taiwan Institute of Chemical Engineers 42(5): 801-808.
107. Yagci, N. and I. Akpinar, The investigation and assessment of characteristics of waste activated sludge after ultrasound pretreatment. Environmental technology, 2011. 32(2): p. 221-230.
108. Zhang, Y., C. Zhang, X. Zhang, L. Feng, Y. Li and Q. Zhou (2016). "Waste activated sludge hydrolysis and acidification: A comparison between sodium hydroxide and steel slag addition." Journal of Environmental Sciences 48: 200-208.
109. Bi, W., Y. Li, and Y. Hu, Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate. Bioresource technology, 2014. 166: p. 1-8.
110. Li, Y.-Y. and T. Noike, Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment. Water Science and Technology, 1992. 26(3-4): p. 857-866.
111. Cassidy, D. and E. Belia, Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water research, 2005. 39(19): p. 4817-4823.
112. Zhang, H.-L., W. Fang, Y.-P. Wang, G.-P. Sheng, R. J. Zeng, W.-W. Li and H.-Q. Yu (2013). "Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances." Environmental science & technology 47(20): 11482-11489.
113. Liu, J., S. Deng, B. Qiu, Y. Shang, J. Tian, A. Bashir and X. Cheng (2019). "Comparison of pretreatment methods for phosphorus release from waste activated sludge." Chemical Engineering Journal 368: 754-763..
114. Crutchik, D. and J. Garrido, Kinetics of the reversible reaction of struvite crystallisation. Chemosphere, 2016. 154: p. 567-572.
115. Lim, S. J., T.-H. Kim, J.-y. Kim, I. H. Shin and H. S. Kwak (2016). "Enhanced treatment of swine wastewater by electron beam irradiation and ion-exchange biological reactor." Separation and Purification Technology 157: 72-79.
116. Henze, M., G. Holm Kristensen, and R. Strube, Rate-capacity characterization of wastewater for nutrient removal processes. Water Science and Technology, 1994. 29(7): p. 101-107.