跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周文祺
Wen-Chi Chou
論文名稱: 指紋分類器之研究
A Study on Fingerprint Classification Systems
指導教授: 蘇木春
Mu-Chun Su
李允中
Jonathan Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 64
中文關鍵詞: 指紋分類
外文關鍵詞: Fingerprint classification
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於每個人的指紋有著獨一無二的特性,因此在生物特徵辨識的領域中,不論是做確認或者是辨認,指紋一直都是最熱門的技術之一。為了使龐大的指紋資料庫的管理更為便利,並提昇指紋辨認的效率,我們通常會先將指紋分類成弧型 (arch)、帳型 (tented arch)、左箕型 (left loop)、右箕型 (right loop) 以及螺旋型 (whorl) 五類。目前已有許多種指紋分類的方法,這些方法各有其優缺點。本論文我們提出了一個了新的指紋分類系統,希望能只萃取少量的特徵而達到儘可能高的分類效果。在此系統中,首先利用一種有效的方法來將指紋影像轉成區域方向影像 (block directional image),接著再透過一個註冊點 (registration point) 偵測的處理步驟,將每張指紋影像都定位於指紋的中心點,以此註冊點為中心取一適當的區域,從此區域中萃取出合適的特徵。最後藉由多維矩形複合式類神經網路(Hyper Rectangular Composite Neural Networks) 進行分類處理。我們使用 NIST-4 資料庫來訓練、測試我們的系統。


    Fingerprints are one of the most popular biometrics techniques in both of verification and identification mode because the fingerprints of an individual are unique. To facilitate the management of large fingerprint database and to speedup the process of fingerprint identification, we will first classify fingerprints into several categories such as arch, tented arch, left loop, right loop, and whorl. Several different approaches have been proposed for fingerprint classification. Each has its own advantages and limitations. In this thesis, a new fingerprint classification system is introduced. The proposed system tries to use feature as fewer as possible, while to achieve correct recognition as high as possible. In this system, we first propose an efficient method to transform fingerprint image into block directional image. Then a registration point detection method is applied to locate the center of each block directional image. In the following, several feature are extracted from a window whose center is located at the detected registration point. Finally, a class of Hyper Rectangular Composite Neural Networks (HRCNNs) is trained for fingerprint classification. The system was tested on 4000 images in the NIST-4 database.

    第一章 緒論 1.1 研究動機  1.1.1 指紋簡介  1.1.2 指紋分類概論 1.2 論文架構 第二章 指紋分類系統 2.1 系統架構 2.2 區域方向偵測 2.3 平滑化處理 2.4 註冊點偵測  2.4.1 找出註冊點  2.4.2 訂定特徵區塊大小 2.5 三角洲偵測 2.6 特徵萃取 第三章 分類器 3.1 學習演算法(SDDL) 3.2 模糊規則的建立 第四章 實驗結果 4.1 測試指紋資料庫簡介 4.2 結果與討論 第五章 結論與展望

    [1] 王有傳,生物測定─聲紋與指紋辨識的研究,淡江大學博士論文,民國91年6月。
    [2] J. L. Blue, G. T. Candela, P. J. Grother, R. Chellapa, and C. L. Wilson, “Evaluation of pattern classifiers for fingerprint and OCR applications,” Pattern Recognition, vol. 27, no. 4, pp. 485-501, 1994.
    [3] G. T. Candela, P. J. Grother, C. I. Watson, R. A. Wilkinson, and C. L. Wilson, “PCASYS─A pattern-level classification automation system for fingerprints,” Technical Report NISTIR 5647, Apr. 1995.
    [4] M. M. S. Chong, T. H. Ngee, L. Jun, and R. K. L. Gay, “Geometric framework for fingerprint classification,“ Pattern Recognition, vol. 30, no. 9, pp. 1475-1488, 1997.
    [5] A. P. Fitz and R. J. Green, “Fingerprint classification using hexagonal fast Fourier transform,” Pattern Recognition, vol. 29, no. 10, pp. 1587-1597, 1996.
    [6] U. Halici and G. Ongun, “Fingerprint classification through self-organizing feature maps modified to treat uncertainties,” Proceedings of the IEEE, vol. 84, no. 10, pp. 1497-1512, Oct. 1996.
    [7] L. Hong and A. K. Jain, “Classification of fingerprint images,” Technical Report MSUCPS:TR98-18, Michigan State Univ., June 1998.
    [8] A. Jain, L. Hong, and R. Bolle, “On-line fingerprint verification,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 4, pp. 302-314, Apr. 1997.
    [9] A. K. Jain, S. Prabhakar, and L. Hong, “A multichannel approach to fingerprint classification,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 4, pp. 348-359, Apr. 1999.
    [10] K. Karu and A. K. Jain, “Fingerprint classification.” Pattern Recognition, vol. 29, no. 3, pp. 389-404, 1996.
    [11] M. Kawagoe and A. Tojo, “Fingerprint pattern classification,” Pattern Recognition, vol. 17, no. 3, pp. 295-303, 1984.
    [12] B. M. Mehtre, “Fingerprint image analysis for automatic identification,” Machine Vision and Applications, no. 6, pp. 124-139, 1993.
    [13] K. A. Nagaty, “Fingerprint classification using artificial neural networks: A combined structural and statistical approach,” Neural Networks, vol. 14, pp. 1293-1305, 2001.
    [14] C. V. K. Rao and K. Black, “Type classification of fingerprints: A syntactic approach,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 2, no. 3, pp. 223-231, 1980.
    [15] A. Senior, “A hidden Markov model fingerprint classifier,” Proc. 31st Asilomar Conf. Signals, Systems and Computers, pp. 306-310, 1997.
    [16] B. G. Sherlock and D. M. Monro, “A model for interpreting fingerprint topology,” Pattern Recognition, vol. 26, no. 7, pp. 1047-1055, 1993.
    [17] R. M. Stock and C. W. Swonger, “Development and evaluation of a reader of fingerprint minutiae,” Technical Report CAL No. XM-2478-X-1, pp. 13-17, 1969.
    [18] M. C. Su, A Neural Network Approach to Knowledge Acquisition, Ph.D. Dissertation, University of Maryland, College Park, Aug. 1993.
    [19] M. C. Su, “Use of neural networks as medical diagnosis expert systems,“ Computers in Biology and Medicine, vol. 24, no. 6, pp. 419-429, 1994.
    [20] C. I. Watson and C. L. Wilson, “NIST special database 4, fingerprint database,” Nat’l Inst. of Standards and Technology, Mar. 1992.
    [21] C. L. Wilson, G. T. Candela, and C. I. Watson, “Neural network fingerprint classification,” J. Artificial Neural Networks, vol. 1, no. 2, pp. 203-228, 1993.

    QR CODE
    :::