跳到主要內容

簡易檢索 / 詳目顯示

研究生: 康瑞麟
Rui-Lin Kang
論文名稱: 石墨稀奈米帶的熱電特性
指導教授: 郭明庭
Ming-Ting Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 37
中文關鍵詞: 熱電材料熱電特性石墨稀二維材料石墨稀奈米帶
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近期,許多的熱電研究都集中在可用作發電機和冰箱的熱電器件上,這是基於熱電效應的電能是最重要的綠色能源之一。雖然研究顯示出石墨稀是屬於金屬性的材料,但扶手椅式石墨稀奈米帶(AGNR)是可以由寬度所決定的半導體特性材料。在這邊,我們從理論上研究了扶手椅式的石墨稀奈米帶(AGNR)在彈道傳輸過程中的熱電特性。我們發現扶手椅石墨稀奈米帶(AGNR)的功率因數和熱電優值作為化學位勢的函數,其最大值皆發生在能隙內且在邊緣帶的附近。


    Recently, many efforts have focused on thermoelectric devices, which can be used as power generators and refrigerators. The electrical power based on thermoelectric effects is one of the most important green energies. Although graphene shows a metallic phase, armchair graphene nanoribbons (AGNRs) show the semiconducting phases, which are determined by their widths.Here, we have theoretically investigated the thermoelectric properties of armchair graphene nanoribbons in ballistic transport process. It is found that the optimized power factor and thermoelectric figure of merit of AGNRs as functions of chemical potential occur within the central gap and near the band edges.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章、導論 1 1-1前言 1 1-2 熱電效應 2 1-3 石墨稀 3 1-4 研究動機 4 第二章、系統模型 6 2-1 石墨稀結構 6 2-2 石墨稀奈米帶 7 2-2.1 扶手椅邊緣奈米帶的石墨稀 8 2-3 電子傳輸係數 10 2-4 熱電係數 11 2-5 聲子熱導 12 第三章、熱電特性的模擬與分析 14 3-1 帶寬為N=4且常溫的熱電特性 14 3-2帶寬對熱電特性的影響 16 3-3 溫度對熱電特性的影響 18 3-4 聲子熱導對熱電優值的影響 20 第四章、結論 21 參考文獻 22

    [1] W. A. Algozeeb, P. E. Savas, D. X. Luong, W. Y. Chen, C. Kittrell, M. Bhat, R. Shahsavari, and J. M. Tour, ACS Nano , 14, 11, 15595(2020).
    [2] Y. G. Gurevich and G. N. Logvinov, Semicond. Sci. Technol. 20 R57 (2005).
    [3] E. Velmre, Electronics Conference (BEC) 12th Biennial Baltic, Tallinn (2010).
    [4] A.F. Ioffe, Infosearch Limited,London(1957).
    [5] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn , Research Triangle Institute, Research Triangle Park, North Carolina 27709 (2001).
    [6] I. B. Akram, Y. Bunimovich, T. K. Jamil, J. K. Yu1,A. G. William and R. H. James, vol 451 10 (2008).
    [7] T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, Science 297, 2229(2002).
    [8] C. Lee , X. Wei , J. W. Kysar and J. Hone, Science 321 385(2008).
    [9] K. I. Bolotin , K. J. Sikes, Z. Jiang , M. Klima , G. Fudenberg , J. Hone , P. Kim and H. L. Stormer , Solid State Commun.(2008).
    [10] F. Mitsutaka , W. Katsunori , N. Kyoko and K. Koichi , Journal of the Physical Society of Japan., 65 (7): 1920 (1996).
    [11] N. Kyoko , F. Mitsutaka , G. Dresselhaus and M. S. Dresselhaus, Physical Review B. , 54 (24): 17954 (1996).
    [12]H. C. Chung , C. P. Chang , C. Y. Lin and M. F. Lin, Physical Chemistry Chemical Physics. 18 (11): 7573 (2016).
    [13] T. Ando ,T. Nakanishi and R. J. Saito , Phys. Soc. Japan 67 2857 (1998).
    [14]T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge , Science 297 2229 (2002).
    [15]Y. M. Lin and M. S. Dresselhaus, Phys. Rev. B 68 075304 (2003).
    [16]H. J. Goldsmid, b. Sc. and R.W. Douglas, Br. J. Appl. Phys. 9 365 (1958).
    [17] K. Wakabayashi , M. Sigrist and M. Fujita , J. Phys. Soc. Japan 67 2089 (1998).
    [18] M. Fujita ,K. Wakabayashi , K. Nakada and K. Kusakabe , J. Phys. Soc. Japan 65 1920 (1996).
    [19] Y. W. Son, M. L. Cohen, and S. G. Louie, Nature 444, 347 (2006).
    [20] K. Wakabayashi , K. Sasaki , T. Nakanishi and T. Enoki, Sci. Technol. Adv. Mater. 11 , 054504 (2010).
    [21] R. Saito, M. Fujita, G. Dresselhaus and M. S. Desselhaus , Phys. Rev. B 46 1804 (1992).
    [22] R. Saito , M. Fujita , G. Dresselhaus and M. S. Dresselhaus , Appl. Phys (1992).
    [23] M. Y. Han, B. Özyilmaz, Y. Zhang and P. Kim , Phys. Rev. Lett. , 98: 206805 (2007).
    [24] J . S. Wang, J. Wang and J. T. Lu , Eur. Phys. J. B 62 381 (2008).
    [25] T. Yamamoto and K. Watanabe , Phys. Rev. Lett. 96 255503 (2006).
    [26] D.M.T. Kuo and Y.C. Chang, Phys. Rev. B 81, 205321 (2010).
    [27] David M. T. Kuo, AIP Advances 10, 045222 (2020).
    [28] Hartmut Haug and Antti-Pekka Jauho , Springer, Heidelberg (1996).
    [29] Markussen T, Jauho AP and Brandbyge M, Phys Rev Lett , 103:055502 (2009).
    [30] Santamore DH and Cross MC, Phys Rev Lett , 87:115502 (2001).
    [31] Rego LGC and Kirczenow G , Phys Rev Lett , 81:232 .(1998).
    [32] T. Kato, S. Usui and T. Yamamoto, Jpn. J. Appl. Phys. 52 06GD05(2013).
    [33] Q .S . Shun , A .L .Chang and Q. Niu , 2D Mater. 4 035014(2017).
    [34] H. Zheng, H . J . Liu, X. J. Tan, H. Y. Lv, L. Pan, J. Shi, and X. F. Tang, Appl. Phys. Lett. 100, 093-104(2012).

    QR CODE
    :::