跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林珈琪
Chia-Chi LIN
論文名稱: 剪切力溶液製程應用於高效能有機薄膜電晶體:含硒碳鏈聯噻吩小分子半導體材料
Selenium-Alkyl Bithiophene(SeBT)-Based Small Molecular Semiconductors via Solution Sheared Method for High-Performance Organic Thin-Film Transistors
指導教授: 劉振良
Cheng-Liang Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 59
中文關鍵詞: 溶液製程剪切力塗佈有機小分子半導體材料有機薄膜電晶體
外文關鍵詞: organic small molecule semiconductor
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用溶液製程並透過剪切力塗佈法製作有機薄膜電晶體元件,主要研究於有機薄膜層,由於之前實驗室製作含硫碳鏈之p-type有機小分子材料SBT,有機薄膜元件電性達1.7 cm2V-1s-1。本研究將硒取代硫原子運用不同鍊長的含硒碳鏈之聯噻吩(selenylated bithiophene; SeBT)為核心,核心頭尾兩端接上三併環噻吩(2,6-di(dithieno[3,2-b;2’,3’-d]-thiophen-2yl; DDTT)為主軸,合成本研究使用得P-type有機小分子半導體材料DDTT-SeBT-C6、DDTT-SeBT-C10及DDTT-SeBT-C14。
    隨著含硒碳鏈長的增加,載子遷移率從DDTT-SeBT-C6 0.09 cm2V-1s-1,增加至DDTT-SeBT-C10 0.06 cm2V-1s-1,再增加至DDTT-SeBT-C14 4.01 cm2V-1s-1,並利用光學顯微鏡、原子力顯微鏡等儀器分析其表面形貌。其中,DDTT-SeBT-C6薄膜呈現不連續狀,DDTT-SeBT-C10從GIXRD可發現結晶性不佳,所以造成電性不佳,反之,DDTT-SeBT-C14表面形貌呈現連續性且結晶性佳,得到優異的電性表現載子遷移率4.01 cm2V-1s-1,我們利用單晶可知,當側鍊較長時,可改善主軸扭轉角使分子呈平面性提高載子遷移率。


    This study research new small molecule semiconductors via solution shearing manufacture organic thin film transistors. Owing to the previous work thio-alkyl substituted bithiophene (SBT), the organic thin film transistor electrical properties is 1.7 cm2V-1s-1. The series of new small molecules is selenylated bithiophene with different alkyl side chains. Then, add 2,6-di(dithieno[3,2-b;2’,3’-d]-thiophen-2yl (DDTT) to become the main backbone on the both side of the core.
    As the carbon length increase, the carrier mobility increases from DDTT-SeBT-C6 0.09 cm2V-1s-1 to DDTT-SeBT-C14 4.01 cm2V-1s-1. The surface morphology was analyzed by optical microscopy, atomic force microscopy, grazing incidence x-ray diffraction, UV-vis spectrophotometer. In these three molecules, the morphology of DDTT-SeBT-C6 is discontinuity. The crystallinity of DDTT-SeBT-C10 is worse. That the reason why they get the poor electrical properties. However, the morphology of DDTT-SeBT-C14 is continuity and the high crystallinity. When the side length increase, the torsion angle can be improved to make the backbone planar to improve the carrier mobility.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 - 1 - 1.1 前言 - 1 - 1.2 有機薄膜電晶體 - 2 - 1.2.1 背景 - 2 - 1.3 基本結構 - 3 - 1.4 界面工程 - 4 - 1.5 基本工作原理 - 7 - 1.6 基本參數與特性曲線 - 8 - 1.7 分子排列與載子傳遞機制 - 10 - 1.8 有機半導體材料 - 11 - 1.9 P-TYPE有機小分子半導體材料 - 11 - 1.10 N-TYPE有機小分子半導體材料 - 14 - 1.11 有機分子之非共價結構閉鎖效應 - 16 - 1.12 有機半導體薄膜製程 - 17 - 1.12.1 真空熱蒸鍍法 - 17 - 1.12.2 溶液製程法 - 18 - 1.13 研究動機 - 20 - 第二章 研究方法 - 21 - 2.1 實驗藥品 - 21 - 2.2 實驗設備 - 22 - 2.3 實驗方法 - 23 - 2.3.1 基板前處理與表面修飾 - 23 - 2.3.2 元件設備 - 24 - 2.4 元件半導體層薄膜量測分析 - 25 - 2.4.1 元件電性量測 - 25 - 2.4.2 偏光光學顯微鏡(POLARIZED OPTICAL MICROSCOPY) - 25 - 2.4.3 紫外線-可見光光譜儀(UV-VIS SPECTROPHOTOMETER) - 25 - 2.4.4 原子力顯微鏡 - 26 - 2.4.5 低掠角X光繞射儀 - 26 - 第三章 結果與討論 - 27 - 3.1 有機薄膜電晶體元件電性分析 - 27 - 3.2 有機小分子半導體材料熱性質分析 - 29 - 3.3 有機小分子半導體光譜特性與電化學分析 - 30 - 3.4 有機小分子半導體材料單晶結構分析 - 33 - 3.5 有機小分子材料半導體薄膜之表面形貌分析 - 35 - 3.5.1光學顯微鏡之表面形貌 - 35 - 3.5.2原子力顯微鏡之表面形貌 - 37 - 3.6 有機小分子材料半導體薄膜之微結構分析 - 38 - 3.7 結論與未來展望 - 42 - 3.8 參考文獻 - 43 - 3.9 附錄 - 46 -

    1. Reese, C.; Roberts, M.; Ling, M.-m.; Bao, Z., Organic thin film transistors. Materials today 2004, 7, 20-27.
    2. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D., Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 2011, 112, 2208-2267.
    3. Guo, X.; Facchetti, A.; Marks, T. J., Imide-and amide-functionalized polymer semiconductors. Chem. Rev. 2014, 114, 8943-9021.
    4. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. J. Chem. Soc., Chem. Commun. 1977, 578-580.
    5. Ebisawa, F.; Kurokawa, T.; Nara, S., Electrical properties of polyacetylene/polysiloxane interface. Journal of applied physics 1983, 54, 3255-3259.
    6. Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature communications 2014, 5, 3005.
    7. Ward, J. W.; Lamport, Z. A.; Jurchescu, O. D., Versatile organic transistors by solution processing. ChemPhysChem 2015, 16, 1118-1132.
    8. Guo, Y.; Yu, G.; Liu, Y., Functional organic field‐effect transistors. Adv. Mat. 2010, 22, 4427-4447.
    9. Klauk, H., Organic thin-film transistors. Chem. Soc. Rev. 2010, 39, 2643-2666.
    10. Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W., 25th Anniversary Article: Key Points for High‐Mobility Organic Field‐Effect Transistors. Adv. Mat. 2013, 25, 6158-6183.
    11. Di, C.-A.; Liu, Y.; Yu, G.; Zhu, D., Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc. Chem. Res. 2009, 42, 1573-1583.
    12. Takimiya, K.; Osaka, I.; Nakano, M., π-Building blocks for organic electronics: revaluation of “inductive” and “resonance” effects of π-electron deficient units. Chem. Mater. 2013, 26, 587-593.
    13. Dimitrakopoulos, C. D.; Malenfant, P. R., Organic thin film transistors for large area electronics. Adv. Mat. 2002, 14, 99-117.
    14. Tan, H.; Mathews, N.; Cahyadi, T.; Zhu, F.; Mhaisalkar, S., The effect of dielectric constant on device mobilities of high-performance, flexible organic field effect transistors. Appl. Phys. Lett. 2009, 94, 177.
    15. Dong, H.; Wang, C.; Hu, W., High performance organic semiconductors for field-effect transistors. Chem. Commun. 2010, 46, 5211-5222.
    16. Giri, G.; Verploegen, E.; Mannsfeld, S. C.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z., Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504.
    17. Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T., Highly soluble [1] benzothieno [3, 2-b] benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. Journal of the American Chemical Society 2007, 129, 15732-15733.
    18. Bao, Z.; Lovinger, A. J.; Brown, J., New air-stable n-channel organic thin film transistors. Journal of the American Chemical Society 1998, 120, 207-208.
    19. Jurchescu, O. D.; Popinciuc, M.; van Wees, B. J.; Palstra, T. T., Interface‐controlled, high‐mobility organic transistors. Adv. Mat. 2007, 19, 688-692.
    20. Watanabe, M.; Chang, Y. J.; Liu, S.-W.; Chao, T.-H.; Goto, K.; Islam, M. M.; Yuan, C.-H.; Tao, Y.-T.; Shinmyozu, T.; Chow, T. J., The synthesis, crystal structure and charge-transport properties of hexacene. Nature chemistry 2012, 4, 574.
    21. Wang, M.; Li, J.; Zhao, G.; Wu, Q.; Huang, Y.; Hu, W.; Gao, X.; Li, H.; Zhu, D., High‐Performance Organic Field‐Effect Transistors Based on Single and Large‐Area Aligned Crystalline Microribbons of 6, 13‐Dichloropentacene. Adv. Mat. 2013, 25, 2229-2233.
    22. Mannsfeld, S. C.; Tang, M. L.; Bao, Z., Thin film structure of triisopropylsilylethynyl‐functionalized pentacene and tetraceno [2, 3‐b] thiophene from grazing incidence X‐Ray diffraction. Adv. Mat. 2011, 23, 127-131.
    23. Anthony, J. E.; Eaton, D. L.; Parkin, S. R., A road map to stable, soluble, easily crystallized pentacene derivatives. Organic letters 2002, 4, 15-18.
    24. Garnier, F.; Hajlaoui, R.; El Kassmi, A.; Horowitz, G.; Laigre, L.; Porzio, W.; Armanini, M.; Provasoli, F., Dihexylquaterthiophene, a two-dimensional liquid crystal-like organic semiconductor with high transport properties. Chem. Mater. 1998, 10, 3334-3339.
    25. Shukla, D.; Nelson, S. F.; Freeman, D. C.; Rajeswaran, M.; Ahearn, W. G.; Meyer, D. M.; Carey, J. T., Thin-film morphology control in naphthalene-diimide-based semiconductors: high mobility n-type semiconductor for organic thin-film transistors. Chem. Mater. 2008, 20, 7486-7491.
    26. Katz, H.; Lovinger, A.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y.-Y.; Dodabalapur, A., A soluble and air-stable organic semiconductor with high electron mobility. Nature 2000, 404, 478.
    27. Katz, H. E.; Johnson, J.; Lovinger, A. J.; Li, W., Naphthalenetetracarboxylic diimide-based n-channel transistor semiconductors: structural variation and thiol-enhanced gold contacts. Journal of the American Chemical Society 2000, 122, 7787-7792.
    28. He, T.; Stolte, M.; Würthner, F., Air‐stable n‐channel organic single crystal field‐effect transistors based on microribbons of core‐chlorinated naphthalene diimide. Adv. Mat. 2013, 25, 6951-6955.
    29. Brown, A.; De Leeuw, D.; Lous, E.; Havinga, E., Organic n-type field-effect transistor. Synthetic metals 1994, 66, 257-261.
    30. Menard, E.; Podzorov, V.; Hur, S. H.; Gaur, A.; Gershenson, M. E.; Rogers, J. A., High‐performance n‐and p‐type single‐crystal organic transistors with free‐space gate dielectrics. Adv. Mat. 2004, 16, 2097-2101.
    31. Oh, J. H.; Suraru, S. L.; Lee, W. Y.; Könemann, M.; Höffken, H. W.; Röger, C.; Schmidt, R.; Chung, Y.; Chen, W. C.; Würthner, F., High‐Performance Air‐Stable n‐Type Organic Transistors Based on Core‐Chlorinated Naphthalene Tetracarboxylic Diimides. Adv. Funct. Mater. 2010, 20, 2148-2156.
    32. Gao, X.; Hu, Y., Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design. J. Mater. Chem. C 2014, 2, 3099-3117.
    33. Pappenfus, T. M.; Chesterfield, R. J.; Frisbie, C. D.; Mann, K. R.; Casado, J.; Raff, J. D.; Miller, L. L., A π-stacking terthiophene-based quinodimethane is an n-channel conductor in a thin film transistor. Journal of the American Chemical Society 2002, 124, 4184-4185.
    34. Wu, Q.; Li, R.; Hong, W.; Li, H.; Gao, X.; Zhu, D., Dicyanomethylene-Substituted Fused Tetrathienoquinoid for High-Performance, Ambient-Stable, Solution-Processable n-Channel Organic Thin-Film Transistors. Chem. Mater. 2011, 23, 3138-3140.
    35. Qiao, Y.; Guo, Y.; Yu, C.; Zhang, F.; Xu, W.; Liu, Y.; Zhu, D., Diketopyrrolopyrrole-containing quinoidal small molecules for high-performance, air-stable, and solution-processable n-channel organic field-effect transistors. Journal of the American Chemical Society 2012, 134, 4084-4087.
    36. Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J., Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev. 2017, 117, 10291-10318.
    37. Ahmadi, S.; Asim, N.; Alghoul, M.; Hammadi, F.; Saeedfar, K.; Ludin, N. A.; Zaidi, S. H.; Sopian, K., The role of physical techniques on the preparation of photoanodes for dye sensitized solar cells. International Journal of Photoenergy 2014, 2014.
    38. Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S. C., Morphology control strategies for solution-processed organic semiconductor thin films. Energy & Environmental Science 2014, 7, 2145-2159.
    39. Vegiraju, S.; Chang, B. C.; Priyanka, P.; Huang, D. Y.; Wu, K. Y.; Li, L. H.; Chang, W. C.; Lai, Y. Y.; Hong, S. H.; Yu, B. C., Intramolecular Locked Dithioalkylbithiophene‐Based Semiconductors for High‐Performance Organic Field‐Effect Transistors. Adv. Mat. 2017, 29, 1702414.
    40. Mei, J.; Bao, Z., Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 2013, 26, 604-615.

    QR CODE
    :::