跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳偉靜
Weijing Wu
論文名稱: 藉由 SDSS-IV MaNGA 觀測數據研究矮星系中的暗物質含量
Dark Matter Content of Dwarf Galaxies in SDSS-IV MaNGA
指導教授: 黃崇源
Chorng-Yuan Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 82
中文關鍵詞: MaNGA暗物質矮星系旋轉曲線
外文關鍵詞: MaNGA, dark matter, dwarf galaxies, rotation curve
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們藉由 SDSS-IV MaNGA 觀測數據,研究矮星系中的暗物質含量。我們把目標星系分為早型星系和晚型星系、平衡系統和未平衡系統,其中大部份的晚型星系為平衡系統。我們利用 Ha 和恆星速度場,分別推導星系的旋轉曲線,從而估算星系質量。我們發現大部份的目標星系的質量遠大於其重子質量,以及一個暗物質含量很高的平衡星型星系和三個暗物質含量很少的未平衡晚型星系。此外,我們比照觀測所得的暗物質密度分佈和三個暗物質模型(NFW、模糊暗物質、偽等溫模型)的預測,發現一些星系的暗物質密度分佈和多個模型的預測吻合,整體而言無法區分這三種模型。最後,我們對比從 和恆星速度場分別得出的分析結果,發現兩者並不完全一致,從 速度場得出的結果較為離散。這些恆星形成氣體可能剛被星系吸積,尚未與星系自身的重力場達到平衡。


    In this study, we examine the dark matter content of dwarf galaxies from SDSS-IV MaNGA database. We classified the galaxies into late-type galaxies (LTGs) and early-type galaxies (ETGs), equilibrium and non-equilibrium. There are more equilibrium galaxies in LTGs. We estimate rotation curves from Ha and stellar velocity fields respectively, and use them to derive dynamical mass. The majority of targets have dynamical mass much greater than baryonic mass, with dark matter constituting at least 70% of dynamical mass. One equilibrium ETG that is very dark-matter-dominated and three non-equilibrium LTGs have little or no dark matter. We also fit the observed dark matter density profiles to three dark matter models: Navarro-Frenk-White (NFW), fuzzy dark matter, and pseudo-isothermal profiles. Some galaxies can be fitted with multiple models. It is difficult to distinguish which model fits better. Besides, we compare the analysis results from the Ha and stellar velocity maps. The two results of the same galaxy are not always consistent with each other, and the results from the Ha data is more scattered. This suggests that the star-forming gas may have an external origin, and has not yet reached equilibrium with the galaxy.

    Abstract vii 摘要 viii 1 Introduction 1 2 Data and Sample Selection 3 2.1 MaNGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 2MASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 ALFALFA-SDSS Galaxy Catalog . . . . . . . . . . . . . . . . . . . 4 2.4 Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Method 7 3.1 Calculation of Dynamical Mass . . . . . . . . . . . . . . . . . . . . 7 3.2 Calculation of Stellar Mass Distribution . . . . . . . . . . . . . . . 10 3.3 Estimation of Gas Distribution . . . . . . . . . . . . . . . . . . . . 11 3.4 Calculation of Dark Matter and Density Profile . . . . . . . . . . . 12 3.5 Models of Dark Matter Density Profile . . . . . . . . . . . . . . . . 13 3.5.1 NFW profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.2 Fuzzy Dark Matter . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.3 Pseudo-isothermal . . . . . . . . . . . . . . . . . . . . . . . 14 4 Results 15 4.1 Properties of Targets . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Existence of Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Dark Matter Density Profile . . . . . . . . . . . . . . . . . . . . . . 21 4.4 Mass components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4.1 Equilibrium vs. non-equilibrium galaxies . . . . . . . . . . 23 4.4.2 LTGs vs. ETGs . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Discussion 29 5.1 Classification of targets . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 Dark matter model fitting . . . . . . . . . . . . . . . . . . . . . . . 29 5.3 Dark matter ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.4 Comparison between the Hα and stellar data . . . . . . . . . . . . 35 5.5 MOND in dwarf galaxies . . . . . . . . . . . . . . . . . . . . . . . . 37 6 Summary 39 Bibliography 41 A Properties of the target galaxies 47 B Velocity, mass and dark matter density distributions of the target galax- ies 51 C Fitting parameters of the target galaxies 63

    [1] V. C. Rubin and J. F. W. Kent, “Rotation of the Andromeda Nebula from
    a spectroscopic survey of emission regions,” The Astrophysical Journal,
    vol. 159, p. 379, Feb. 1970.
    [2] A. Bosma, “The distribution and kinematics of neutral hydrogen in spiral
    galaxies of various morphological types,” University of Groningen, 1978.
    [3] F. Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln,” Helvetica
    Physica Acta, vol. 6, pp. 110–127, Jan. 1933.
    [4] C. L. Sarazin, “X-ray emission from clusters of galaxies,” Reviews of Modern
    Physics, vol. 58, pp. 1–115, 1 Jan. 1986.
    [5] M. Arnaud, “X-ray observations of clusters of galaxies,” Aug. 2005.
    [6] M. Oguri, S. Miyazaki, C. Hikage, et al., “Two- and three-dimensional
    wide-field weak lensing mass maps from the Hyper Suprime-Cam Sub-
    aru Strategic Program S16A data,” Publications of the Astronomical Society of
    Japan, vol. 70, Special Issue 1 Jan. 2018.
    [7] Planck Collaboration, “Planck 2015 results: XI. CMB power spectra,
    likelihoods, and robustness of parameters,” Astronomy and Astrophysics,
    vol. 594, Oct. 2016.
    [8] G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark
    matter,” Physics Reports, vol. 267, pp. 195–373, 5-6 Mar. 1996.
    [9] G. Servant and T. M. Tait, “Is the lightest Kaluza-Klein particle a viable
    dark matter candidate?” Nuclear Physics B, vol. 650, pp. 391–419, 1-2 Feb.
    2003.
    [10] J. F. Navarro, C. S. Frenk, and S. D. M. White, “A universal density profile
    from hierarchical clustering,” The Astrophysical Journal, vol. 490, pp. 493–
    508, 2 Dec. 1997.
    [11] A. Del Popolo, V. Cardone, and G. Belvedere, “Surface density of dark
    matter haloes on galactic and cluster scales,” Monthly Notices of the Royal
    Astronomical Society, Dec. 2012.
    [12] B. Moore, S. Ghigna, F. Governato, et al., “Dark matter substructure within
    galactic halos,” The Astrophysical Journal, vol. 524, pp. 19–22, 1999.
    [13] B. F. Griffen, A. P. Ji, G. A. Dooley, et al., “The Caterpillar Project: A large
    suite of Milky Way sized halos,” The Astrophysical Journal, vol. 818, p. 10, 1
    Feb. 2016.
    [14] A. Drlica-Wagner, K. Bechtol, S. Mau, et al., “Milky Way satellite census.
    I. The observational selection function for Milky Way satellites in DES Y3
    and Pan-STARRS DR1,” The Astrophysical Journal, vol. 893, p. 47, 1 2020.
    [15] J. S. Bullock and M. Boylan-Kolchin, “Small-scale challenges to the ΛCDM
    paradigm,” Annual Review of Astronomy and Astrophysics, vol. 55, pp. 343–
    387, 1 2017.
    [16] R. A. Flores and J. R. Primack, “Observational and theoretical constraints
    on singular dark matter halos,” The Astrophysical Journal, vol. 427, p. L1,
    May 1994.
    [17] J. F. Navarro, A. Ludlow, V. Springel, et al., “The diversity and similarity
    of simulated cold dark matter haloes,” Monthly Notices of the Royal Astro-
    nomical Society, vol. 402, pp. 21–34, 1 2010.
    [18] W. J. G. de Blok, F. Walter, E. Brinks, et al., “High-Resolution Rotation
    Curves and Galaxy Mass Models from THINGS,” The Astronomical Jour-
    nal, vol. 136, no. 6, pp. 2648–2719, Dec. 2008.
    [19] P. Boldrini, “The cusp–core problem in gas-poor dwarf spheroidal galax-
    ies,” Galaxies, vol. 10, 1 Feb. 2022.
    [20] H. Y. Schive, T. Chiueh, and T. Broadhurst, “Cosmic structure as the quan-
    tum interference of a coherent dark wave,” Nature Physics, vol. 10, pp. 496–
    499, 7 2014.
    [21] L. Hui, “Wave dark matter,” Annual Review of Astronomy and Astrophysics,
    vol. 59, no. 1, pp. 247–289, 2021.
    [22] K. Bundy, M. A. Bershady, D. R. Law, et al., “Overview of the SDSS-IV
    MaNGA survey: Mapping Nearby Galaxies at Apache Point Observa-
    tory,” The Astrophysical Journal, vol. 798, 1 Jan. 2015.
    [23] T. H. Jarrett, T. Chester, R. Cutri, et al., “2MASS Extended Source Catalog:
    overview and algorithms,” The Astronomical Journal, vol. 119, pp. 2498–
    2531, 5 May 2000.
    [24] M. F. Skrutskie, R. M. Cutri, R. Stiening, et al., “The Two Micron All Sky
    Survey (2MASS),” The Astronomical Journal, vol. 131, pp. 1163–1183, 2 Feb.
    2006.
    [25] M. P. Haynes, R. Giovanelli, B. R. Kent, et al., “The Arecibo Legacy Fast
    ALFA Survey: The ALFALFA Extragalactic HI Source Catalog,” The Astro-
    physical Journal, vol. 861, p. 49, 1 2018.
    [26] A. Durbala, R. A. Finn, M. C. Odekon, et al., “The ALFALFA-SDSS Galaxy
    Catalog,” The Astronomical Journal, vol. 160, p. 271, 6 2020.
    [27] N. C. Relatores, A. B. Newman, J. D. Simon, et al., “The dark matter dis-
    tributions in low-mass disk galaxies. II. The inner density profiles,” The
    Astrophysical Journal, Nov. 2019.
    [28] L. S. Pilyugin, E. K. Grebel, I. A. Zinchenko, et al., “Relations between
    abundance characteristics and rotation velocity for star-forming MaNGA
    galaxies,” Astronomy and Astrophysics, vol. 623, A122, Mar. 2019.
    [29] B. Cherinka, B. H. Andrews, J. Sánchez-Gallego, et al., “Marvin: A tool kit
    for streamlined access and visualization of the SDSS-IV MaNGA data set,”
    The Astronomical Journal, vol. 158, p. 74, 2 Jul. 2019.
    [30] K. G. Begeman, “HI rotation curves of spiral galaxies. I. NGC 3198.,” As-
    tronomy and Astrophysics, vol. 223, pp. 47–60, 1989.
    [31] D. Krajnovi ́c, M. Cappellari, P. T. D. Zeeuw, et al., “Kinemetry: A gener-
    alization of photometry to the higher moments of the line-of-sight veloc-
    ity distribution,” Monthly Notices of the Royal Astronomical Society, vol. 366,
    pp. 787–802, 3 2006.
    [32] D. T. Weldrake, W. J. de Blok, and F. Walter, “A high-resolution rotation
    curve of NGC 6822: A test-case for cold dark matter,” Monthly Notices of
    the Royal Astronomical Society, vol. 340, pp. 12–28, 1 Mar. 2003.
    [33] C. Y. Peng, L. C. Ho, C. D. Impey, et al., “Detailed decomposition of
    galaxy images. II. Beyond axisymmetric models,” The Astronomical Jour-
    nal, vol. 139, pp. 2097–2129, 6 Jun. 2010.
    [34] J. L. Sersic, Atlas de Galaxias Australes. 1968.
    [35] M. Baes and G. Gentile, “Analytical expressions for the deprojected Sérsic
    model,” Astronomy and Astrophysics, vol. 525, 8 Dec. 2010.
    [36] E. F. Bell, D. H. McIntosh, N. Katz, et al., “The optical and near-infrared
    properties of galaxies. I. Luminosity and stellar mass functions,” The As-
    trophysical Journal Supplement Series, vol. 149, pp. 289–312, 2 Dec. 2003.
    [37] S. S. McGaugh and J. M. Schombert, “Color-mass-to-light-ratio relations
    for disk galaxies,” The Astronomical Journal, vol. 148, 5 Nov. 2014.
    [38] Planck Collaboration, “Planck 2015 results. XIII. Cosmological parame-
    ters,” Astronomy and Astrophysics, vol. 594, A13, Feb. 2015.
    [39] R. C. Kennicutt and N. J. Evans, “Star formation in the Milky Way and
    nearby galaxies,” Annual Review of Astronomy and Astrophysics, vol. 50,
    pp. 531–608, Sep. 2012.
    [40] S. S. McGaugh and J. M. Schombert, “Weighing galaxy disks with the bary-
    onic Tully-Fisher relation,” The Astrophysical Journal, vol. 802, 1 Mar. 2015.
    [41] S. S. McGaugh, “The baryonic Tully-Fisher relation of gas-rich galaxies as
    a test of ΛCDM and MOND,” The Astronomical Journal, vol. 143, 2 Feb.
    2012.
    [42] A. Rémy-Ruyer, S. C. Madden, F. Galliano, et al., “Gas-to-dust mass ra-
    tios in local galaxies over a 2 dex metallicity range,” Astronomy and Astro-
    physics, vol. 563, Mar. 2014.
    [43] H. Y. Schive, M. H. Liao, T. P. Woo, S. K. Wong, T. Chiueh, T. Broadhurst,
    and W. Y. Hwang, “Understanding the Core-Halo relation of quantum
    wave dark matter from 3D simulations,” Physical Review Letters, vol. 113,
    26 Dec. 2014.
    [44] A. Burkert, “Fuzzy dark matter and dark matter halo cores,” The Astro-
    physical Journal, vol. 904, p. 161, 2 Nov. 2020.
    [45] K. G. Begeman, A. H. Broeils, and R. H. Sanders, “Extended rotation
    curves of spiral galaxies: Dark haloes and modified dynamics,” Monthly
    Notices of the Royal Astronomical Society, vol. 249, pp. 523–537, 3 Apr. 1991.
    [46] S. Shen, H. J. Mo, S. D. M. White, et al., “The size distribution of galaxies
    in the Sloan Digital Sky Survey,” Monthly Notices of the Royal Astronomical
    Society, vol. 343, pp. 978–994, 3 Aug. 2003.
    [47] M. Barden, Mic, KK, BB, and CC, “GEMS: The surface brightness and sur-
    face mass density evolution of disk galaxies,” The Astrophysical Journal,
    vol. 635, pp. 959–981, 2 Dec. 2005.
    [48] J. J. Bryant, S. M. Croom, J. V. D. Sande, et al., “The SAMI galaxy survey:
    Stellar and gas misalignments and the origin of gas in nearby galaxies,”
    Monthly Notices of the Royal Astronomical Society, vol. 483, pp. 458–479, 1
    Feb. 2019.
    [49] J. Binney and S. Tremaine, Galactic Dynamics: Second Edition. 2008.
    [50] L. Strigari, S. Koushiappas, J. Bullock, et al., “The most dark-
    matter–dominated galaxies: Predicted gamma-ray signals from the
    faintest Milky Way dwarfs,” The Astrophysical Journal, vol. 678, pp. 614–
    620, 2 May 2008.
    [51] M. Geha, B. Willman, J. D. Simon, et al., “The least-luminous galaxy: Spec-
    troscopy of the Milky Way satellite Segue 1,” The Astrophysical Journal,
    vol. 692, pp. 1464–1475, 2 Feb. 2009.
    [52] N. F. Martin, R. A. Ibata, S. C. Chapman, et al., “A Keck/DEIMOS spec-
    troscopic survey of faint Galactic satellites: Searching for the least massive
    dwarf galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 380,
    pp. 281–300, 1 2007.
    [53] J. D. Simon, “The faintest dwarf galaxies,” Annual Review of Astronomy and
    Astrophysics, vol. 57, pp. 375–415, 1 2019.
    [54] J. D. Simon, A. D. Bolatto, A. Leroy, et al., “High-resolution measurements
    of the halos of four dark matter–dominated galaxies: Deviations from a
    universal density profile,” The Astrophysical Journal, vol. 621, pp. 757–776,
    2 Mar. 2005.
    [55] E. V. Karukes and P. Salucci, “The universal rotation curve of dwarf
    disc galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 465,
    pp. 4703–4722, 4 Mar. 2017.
    [56] G. Rhee, O. Valenzuela, A. Klypin, et al., “The rotation curves of dwarf
    galaxies: A problem for cold dark matter?” The Astrophysical Journal,
    vol. 617, pp. 1059–1076, 2 Dec. 2004.
    [57] R. Sancisi, F. Fraternali, T. Oosterloo, et al., “Cold gas accretion in galaxies,”
    Astronomy and Astrophysics Review, vol. 15, pp. 189–223, 3 Jun. 2008.
    [58] T. A. Davis, K. Alatalo, M. Sarzi, et al., “The ATLAS3Dproject - X. On the
    origin of the molecular and ionized gas in early-type galaxies,” Monthly
    Notices of the Royal Astronomical Society, vol. 417, pp. 882–899, 2 Oct. 2011.
    [59] M. Milgrom, “A modification of the Newtonian dynamics - Implications
    for galaxies,” The Astrophysical Journal, vol. 270, p. 371, Jul. 1983.
    [60] M. Milgrom, “MOND–a pedagogical review,” Dec. 2001

    QR CODE
    :::