| 研究生: |
施芊妘 Chien-Yun Shih |
|---|---|
| 論文名稱: |
探討以旋轉塗佈製程形成之硼矽合金層的生成現象及其對雙面矽晶太陽能電池之影響 Study of formation of boron-rich layers using boron spin-on-dopant diffusion process and its impact on bifacial silicon solar cells |
| 指導教授: |
陳一塵
I-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 旋轉塗佈摻雜 、硼矽合金層 、雙面受光型太陽能電池 |
| 外文關鍵詞: | Spin-on dopants, Boron rich layer, N-type bifacial silicon solar cells |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在不同硼擴散源擴散過程中,經常會生成硼矽合金層(Boron rich layer, BRL)在硼矽玻璃(Borosilicate glass, BSG)與射極之間,其具有良好的去疵效應(Gettering effect),但對於太陽能電池元件來說,BRL會造成嚴重複合使得反向飽和電流密度增加,且其存在會導致接觸電阻上升,因此會透過低溫氧化或是蝕刻的方式去除。
本研究利用旋轉塗佈之擴散源擴散形成N型雙面受光型太陽能電池之射極,觀察以不同濃度之擴散源形成的BRL情形,藉以探討其生成現象,並使用低溫氧化方式去除BRL,去除後反向飽和電流密度(Inverse saturation current density)由1.2x10-11 A/cm2降至4.5x10-13 A/cm2,接觸電阻(Contact resistivity)則從11.06 mΩ-cm2降至3.97 mΩ-cm2。
為了探討不同BRL厚度的變化會如何反應在太陽能電池元件,我們將不同氧化條件製作成雙面受光型太陽能電池,發現隨著BRL變薄,內部量子效率光譜響應圖中短波長的部份有明顯的提升,而在太陽能電池電性部份,隨著氧化時間的增長,短路電流密度(Jsc)提升4.2 mA/cm2;填充因子(FF)提升6.9%;轉換效率(η)則提升了1.7%。
Most current B diffusion processes used to fabricate n-type solar cell result in the formation of BRL which is located between the borosilicate glass (BSG) and emitter region. The formation of BRL is effective at gettering, but it’s harmful to silicon solar cell performance. The recombination centers in the BRL cause saturation current density degradation, and as the thickness of BRL increases, the contact resistance value increases. Low temperature oxidation and chemical etching are often used to remove the BRL.
In this work, we used boron acid as spin-on dopants to form the emitter of n-type bifacial silicon solar cells. We observed the formation of BRL by different concentration boron acid and investigated the influence of removal of the BRL by low temperature oxidation on inverse saturation current density and contact resistivity. We obtained that removing the BRL reduce inverse saturation current density from 1.2x10-11 A/cm2 to 4.5x10-13 A/cm2. In addition, the contact resistance value decreases from 11.06 mΩ-cm2 to 3.97 mΩ-cm2.
In order to explore the effects of gradual removal of the BRL in the finished cell, we applied different oxidation conditions to bifacial solar cell. We observed that when the thickness of the BRL decreases, the IQE response increases in the short wavelength. As for the cell performance, it shown that the optimum oxidation condition raised the saturation current density by 4.2 mA/cm2; fill factor by 6.9%; the cell efficiency by 1.7%.
[1] http://www.climatewarmingcentral.com/science_page.html
[2] http://www.zmescience.com/ecology/climate/how-much-renewable-energy/
[3] https://cleantechnica.com/2016/02/12/is-this-the-best-solar-chart-yet/
[4] http://solarpanelsforyourhomes.com/
[5] D. M. Chapin, C. S. Fuller, G. L. Pearson, Journal of Applied Physics, 25, 676 (1954)
[6] Y. S. Tyan, E. A. Perez-Alburne, Conference: 16. IEEE photovoltaics specialists conference, San Diego, CA, USA, 28 Sep, (1982)
[7] Z. I. Alferov, V. M. Andreev, M. B. Kagan, I. I. Protasov, V. G. Trofim, Sov. Phys. Semicond., 4, 2047 (1971)
[8] P. Rappaport, Solar Energy, 3, issue 4, 8 (1959)
[9] Bloomberg, New Energy Finance & EnergyTrend.com
[10] G. Stokkan, S. Riepe, O. Lohne, W. Warta, Journal of Applied Physics, 101, 053515 (2007)
[11] Fraunhofer Institute for Solar Energy Systems, ISE (2016)
[12] J. Schmidt, K. Bothe, R. Bock, C. Schmiga, R. Krain, R. Brendel, 22nd European Photovoltaic Solar Energy Conference, 3-7 (2007)
[13] https://www.quora.com/What-is-the-best-technology-for-setting-up-a-1mw-solar-panel-electricity-production-unit-in-terms-of-cost-yield-maintenance-and-area-required
[14] PV News, Paul Maycock, 1997.
[15] European Photovoltaic Industry Association (2010)
[16] European Photovoltaic Industry Association (2014)
[17] http://www.solarchoice.net.au/blog/news/quiet-innovations-keeping-screen-printed-solar-cells-on-top-080215
[18] Park S, Bae S, Kim H, Kim S, Do Kim Y, Park H, Kim S, Tark SJ, Son CS, Kim D, Current Applied Physics, 12, 17-22 (2012)
[19] J. Zhao, A. Wang, M.A. Green, Technical digest of the 11th International Photovoltaic Science and Engineering Conference, 65, 429-435 (2001)
[20] S. Gatz, K. Bothe, J. Muel¬ler, T. Dull¬we¬ber, and R. Bren¬del, Energy Pro¬ce¬dia, 8, 318–323 (2011)
[21] A.U. Rehman, S.H. Lee, Materials, 7, 1318-1341 (2014)
[22] http://www.panasonic.com/global/home.html
[23] A.U. Rehman, S.H. Lee, The Scientific World Journal, 2013, 470437 (2013)
[24] http://www.pv-tech.org/solar-media-store-shutdown
[25] http://old.hssyxx.com/zhsj/kexue-2/co6-2/6-21/206.html
[26] S. O. Kasap, Optoelectronics and Photonics Principles and Practices, Prentice -Hall, ed. 1.0 (2001)
[27] H. Hoppe, N. S. Sariciftci, Organic solar cells, Journal of materials research, 19, 1924-1945 (2004).
[28] B. Fischer, PhD Thesis, University of Konstanz (2003)
[29] Schimpe, R., AEÜ - International Journal of Electronics and Communications, 46, 80-85 (1992)
[30] M. wolf, H. Rauschenbach, Advanced energy conversion, 3, 455-479 (1963)
[31] A. B. Sproul, M. A. Green, and A. W. Stephens, J. Appl. Phys., 72, 4161-4171 (1992)
[32] http://pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency
[33] W. Shockley and W. Read, Physical Review, 87, 835–842 (1952)
[34] Arnab Das, PhD dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical and Computer Engineering (2012)
[35] A. G. Aberle, University of New South Wales, Sydney NSW 2052 (1999)
[36] J. P. Colinge and C. A. Colinge, Physics of semiconductor devices, Kluwer academic publishers (2002)
[37] S. M. Sze, and K. K. Ng, Physics of semiconductor devices, John Wiley & Sons, Inc., Hoboken, NJ, USA. (2006)
[38] Choi, S.J., et al., Renewable Energy, 54, 96-100 (2013)
[39] A. B. Sproul, M. A. Green, and A. W. Stephens, J. Appl. Phys., 72, 4161-4171 (1992)
[40] M. S. Tyagi and R. V. Overstraeten, Solid-St. Electron., 26, 577-597 (1983)
[41] M. J. Kerr and A. Cuevas, J. Appl. Phys., 91, 97-104 (2002)
[42] W. Shockley and W. Read, Phys. Rev., 87, 835-842 (1952)
[43] I. Martín, a M. Vetter, M. Garín, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla et al., Journal of Applied Physics, 98, 114912-114921 (2005)
[44] M. Kerr and A. Cuevas, Journal of Applied Physics, 91, 2473-2481 (2002)
[45] S. Dauwe, PhD Thesis, University of Hannover (2004)
[46] Kang, J. S., and D. K. Schroder, Journal of Applied Physics, 65, 2974-2985 (1989)
[47] Macdonald, Daniel, Conference Record of the Twenty-Ninth IEEE, 285-288 (2002)
[48] Das, Arnab, Georgia Institute of Technology (2012)
[49] Ohe, N., Tsutsui, K., Warabisako, T., & Saitoh, T., Solar energy materials and solar cells, 48(1-4), 145-150 (1997)
[50] Cousins, Peter J., and Jeffrey E. Cotter., IEEE Transactions on Electron Devices, 53.3, 457-464 (2006)
[51] Phang, Sieu Pheng, Wensheng Liang, Bettina Wolpensinger and Michael Andreas Kessler, IEEE Journal of Photovoltaics, 3.1, 261-266 (2013)
[52] Phang, S. P., and D. Macdonald, Journal of Applied Physics, 109.7, 073521 (2011)
[53] Ryu, Kyung Sun, Georgia Institute of Technology (2015)
[54] D. M. Brown* and P. R. Kennicott, J. Electrochem. Soc., 118(2), 293-300 (1971)
[55] E. Arai, H. Nakamura, and Y. Terunuma, J. Electrochem. Soc.: Solid State Sci. Technol.
120, 980–7 (1973)
[56] T. L. Aselage, J. Mater. Res., 13, 1786–94 (1998)
[57] Michael Andreas Kessler, Tobias Ohrdes, Bettina Wolpensinger and Nils-Peter Harder, Semiconductor Science and Technology, 25, 055001 (2010)
[58] Bandana Singha and Chetan Singh Solanki, Semiconductor Science and Technology, 31, 035009 (2016)
[59] Bandana Singha and Chetan Singh Solanki, Materials Science in Semiconductor Processing, 57, 83–89 (2017)
[60] G. L. Vick and K. M. Whittle, J. Electrochem. Soc., 116, issue 8, 1142-1144 (1969)
[61] E. de Fresart, S. S. Rhee, and K. L. Wang, Appl. Phys. Lett., 49, 847 (1986)
[62] M. Furuhashi, T. Hirose, H. Tsuji, M. Tachi, and K. Taniguchi, Eur. Phys. J. Appl. Phys., 27, 163–166 (2004)
[63] S. A. McHugo, R. J. McDonald, A. R. Smith, and D. L. Hurley, Appl. Phys. Lett., 73, 1424 (1998)
[64] Takeshi TERAKAWA, Dong WANG and Hiroshi NAKASHIMA, Japanese Journal of Applied Physics, 45, No. 4A, 2643–2647 (2006)
[65] S.M. Myers, G.A. Petersen, T.J. Headley, J.R. Michael, T.L. Aselage and C.H. Seager, Nuclear Instruments and Methods in Physics Research, 127–128, 291-296 (1997)
[66] V. Vähänissi, A. Haarahiltunen, H. Talvitie, M. Yli-Koski, J. Lindroos, and H. Savin, Phys. Status Solidi RRL, 4, No. 5–6, 136–138 (2010)
[67] Cheolmin Park, Bonggi Kim, Nagarajan Balaji, Youn-Jung Lee, Minkyu Ju, Hoongjoo Lee, and Junsin Yi, Journal of Nanoscience and Nanotechnology, 16,4846-4850 (2016)
[68] Masahiro Susa and Kazuhiro Nagata, Material &Science and Engineering, A 146, 51-62 (1991)
[69] Bandana Singha1 and Chetan Singh Solanki, Mater. Res. Express, 5, 015907 (2018)
[70] Helmut Mäckel and Kenneth Varner, Prog. Photovolt: Res. Appl., 21, 850–866 (2013)
[71] Kyungsun Ryu, Ajay Upadhyaya, Hyun-Jin Song, Chel-Jong Choi, Ajeet Rohatgi and Young-Woo O, Appl. Phys. Lett., 101, 073902 (2012)
[72] D. Macdonald, H. Mäckel, and A. Cuevas, Appl. Phys. Lett., 88, 092105 (2006)