| 研究生: |
林正軒 Cheng-hsuan Lin |
|---|---|
| 論文名稱: |
三維表面電漿元件光電轉換特性之研究 Three Dimensional Surface Plasmon Resonance Device for the Application of Optoelectronic Transformation |
| 指導教授: |
陳昇暉
Sheng-hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 金屬-絕緣層-金屬 、表面電漿元件 、陽極氧化鋁 、換酸製程 、自我複製技術 |
| 外文關鍵詞: | Metal-Insulator-Metal (MIM), anodic aluminum oxide (AAO), multi-electrolyte-step process (MES), Auto-cloning technique, Finite Difference Time Domain (FDTD) |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
將太陽光轉換成電能的太陽能電池,是二十一世紀面對能源危機,尋找替代能源中相當重要的研究方向。光電轉換的技術有許多不同方式,有光伏元件(photovoltaic cells)、整流天線(rectenna, rectifying antenna)等。本論文主要研究由整流天線改良的金屬-絕緣層-金屬(Metal-Insulator-Metal
, MIM)結構,此結構可以直接轉換可見光波長的能量。
MIM表面電漿結構的光電轉換,主要利用表電漿耦合機制與熱載子穿隧效應兩種方式。其中,隨著近年來奈米技術的純熟,極薄的膜層(<15 nm)都可以被實現後,由MIM結構各層厚度所決定的熱載子穿隧位能障壁已可自由調整。在產生表面電漿的偶合機制上,傳統的菱鏡耦合法對於入射光有特定角度的限制;而對於結構式二維光柵結構MIM元件,雖突破了入射光特定角度了限制條件,但又發現若要產生表面電漿共振,其結構對於入射光的偏振態有所篩選。
綜合以上種種限制條件,本論文題出了三維結構的構思:我們利用陽極氧化鋁法製作了二維的奈米孔洞膜板後,結合自我複製式成膜技術設計並完成了三維MIM表面電漿元件。根據量測結果,除了成功觀察到表面電漿的吸收光譜可在可見光波段的高頻區外,此結構也成功突破特定角度、特定偏振的限制;相比於稜鏡耦合法的平板MIM元件,此研究成果大大縮小了整體元件大小;而且在光電轉換的效率上,相比與結構式的二維MIM元件更超過了一個數量級。其中,我們更發現此三維MIM表面電漿結構對應不同的入射光波長時可產生不同強度光電流的特殊現象。
There are several techniques can transit solar energy as electrical energy, such as solar cell, photodiode or rectenna. Based on the surface plasmonic effect and the hot carrier transportation, the metal-insulator-metal device (MIM) was employed to convert the solar spectrum from the ranges of visible light to infrared region in this study.
In this research, the MIM device was fabricated on an anodic aluminum oxide (AAO) template. The uniform pore size and period of the AAO can be achieved by using the multi-electrolyte-step process. The auto-cloning technique was applied to achieve the three-dimensional MIM. Besides, the Finite Difference Time Domain (FDTD) method was used to simulate the properties the three-dimensional device and realize its plasmonic effect.
Finally, the power conversion efficiency (PCE) 1.34E-03 % of the three-dimensional MIM was achieved under an AM 1.5 solar simulator. And we find the photocurrent of the MIM device is corresponding to the wavelength of the incident light.
[1]
R. L. Bailey, "A Proposed New Concept for a Solar-Energy Converter," Journal of Engineering for Gas Turbines and Power, vol. 94, pp. 5, 1972.
[2]
A. M. Marks and M. Athol, "Device for conversion of light power to electric power," United States Patent and Trademark Office 1984.
[3]
G. H. Lin, R. Abdu, and J. O. M. Bockris, "Investigation of resonance light absorption and rectification by subnanostructures," Journal of Applied Physics, vol. 80, pp. 565-568, 1996.
[4]
L. O. Hocker, "Frequency Mixing in the Infrared and Far-Infrared Using a Metal-to-Metal Point Contact Diode," Applied Physics Letters, vol. 12, pp. 401, 1968.
[5]
J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Smythe, "ac electron tunneling at infrared frequencies: Thin-film M-O-M diode structure with broad-band characteristics," Applied Physics Letters, vol. 24, pp. 275-279, 1974.
[6]
B. Berland, "Photovoltaic technologies beyond the horizon: optical rectenna solar cell," National Renewable Energy Laboratory, 2003.
[7]
S. Krishnan, H. L. Rosa, E. Stefanakos, S. Bhansali, and K. Buckle, "Design and development of batch fabricatable metal-insulator-metal diode and microstrip slot antenna as rectenna elements," Sensors and Actuators A: Physical, vol. 142, pp. 40-47, 2008.
[8]
P. Esfandiari, "Tunable antenna-coupled metal-oxide-metal uncooled IR detector," SPIE, Infrared technology and applications XXXI
Conference, 2005.
[9]
M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, "Solar spectrum rectification using nano-antennas and tunneling diodes," SPIE, Optoelectronic Integrated Circuits XII, 2010.
[10]
B. J. Eliasson, "Metal-Insulator-Metal Diodes For Solar Energy Conversion," Master Thesis, Department of Electrical and Computer Engineering, University Colorado at Boulder, 2001.
[11]
D. Kovacs, J. Winter, S. Meyer, A. Wucher, and D. Diesing, "Photo and particle induced transport of excited carriers in thin film tunnel junctions," Physical Review B, vol. 76, pp. 235408, 2007.
[12]
M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, "Solar spectrum rectification using nano-antennas and tunneling diodes," SPIE, Optoelectronic Integrated Circuits XII, 2010.
[13]
T. George, I. T. Wu, N. Kislov, J. Wang, M. S. Islam, and A. K. Dutta, "Metal-insulator-metal tunneling diode for uncooled infrared high-speed detectors," SPIE, Micro- and Nanotechnology Sensors,
Systems, and Applications II, 2010.
[14]
M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, "Efficient optical coupling into metal-insulator-metal plasmon modes with subwavelength diffraction gratings," Applied Physics Letters, vol. 92, p. 113109, 2008.
[15]
黃偉真, "金屬表面電漿元件於光電轉換之應用," 碩士論文, 光電科學與工程學系, 國立中央大學, 2013.
[16]
F. Wang and N. A. Melosh, "Plasmonic energy collection through hot carrier extraction," Nano Letter, vol. 11, pp. 5426-30,2011.
[17]
F. Wang and N. A. Melosh, "Theoretical analysis of hot electron collection in metal-insulator-metal devices," SPIE, Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion II, 2011.
[18]
張阜權, 孫榮山, and 唐偉國, "光學," 亞東出版, 1998,
[19]
Guru and Hiziroglu, “電磁學理論基礎/Electromagnetic Field Theory Fundamentals,” 高立圖書有限公司, 2005.
[20]
顏嘉宏, "表面電漿共振系統之相位擷取與分析," 碩士論文, 光電科學與工程學系,國立中央大學, 2009.
[21]
邱國斌 and 蔡定平, "金屬表面電漿簡介," 物理雙月刊, 二十八卷二期, 2006
[22]
吳民耀 and 劉威志, "表面電漿子理論與模擬," 物理雙月刊, 二十八卷二期, 2006.
[23]
R. Wood, "On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum," London Proceedings of the Physical Society, 1902.
[24]
U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld's Waves)," Journal of the Optical Society of America, vol. 31, p. 10, 1941.
[25]
A. Otto, "Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection," Zeitschrift ffir Physik, vol. 216, pp. 398-410, 1968.
[26]
E. Kretschmann, "The determination of the surface roughness of thin layers by measuring the angular dependence of the scattered radiation of surface plasma oscillations," Optics Communications, vol. 10, pp. 353-356, 1974.
[27]
F. Wang and N. A. Melosh, "Supplementary Information for Plasmonic Energy Collection through Hot Carrier Extraction," Nano Letter, vol.11, pp. 5426–30, 2011.
[28]
K. H. Gundlach, "Theory of metal-insulator-metal tunneling for a simple two-band model," Journal of Applied Physics, vol. 44, pp. 5005, 1973.
[29]
J. Robertson and C. W. Chen, "Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate," Applied Physics Letters, vol. 74, pp. 1168-1170, 1999.
[30]
M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous couoled-wave analysis of binary gratings," Journal of the Optical Society of America, vol. 12, 1995.
[31]
P. E. Blöchl, "Protector Augmented-Wave Method," Physical Review B, vol.50, pp. 17953, 1994.
[32]
M. Suzuki, "Transfer-matrix method and Monte Cario simulation in quantum spin systems," Physical Review B, vol. 31, pp. 2957, 1985.
[33]
K.S.Yee, "Numerical solution of initial boundary value problems involving Maxwall’s equation in isotropic media," IEEE Transactions Antennas and Propagation, vol. 14, pp.302-307, 1996.
[34]
V. Demir, "Simulation of Electromagnetic Fields: The Finite-Difference Time-Domain Method and Its Applications,”Department of Electrical Engineering, Northern Illinois University, 2010.
[35]
David R D.Penn,"Electron mean free paths for free-electron-like materials," Physical Review B, vol 13, 1976.
[36]
R.N.Stuart, F.Wooton, "Mean free path of hot electrons and holes in metals,"Physical Review latters, vol 10,1963
[37]
A. P. Li,and F. Müller, ”Hexagonal Pore Arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” Journal of Applied Physics Phys. Vol.84,pp. 6023, 1998.
[38]
F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,”Chemistry of materials, vol.10, pp. 2470-2480, 1998.
[39]
G. E. Thompson, “Porous Anodic Alumina: Fabrication, Characterization and Application,” Thin Solid Films, vol. 297, pp.192-201, 1997.
[40]
Z. Wang Z, and M. Brust, “Fabrication of nanostructure via self-assembly of nanowires within the AAO template,” Nanoscale Research Letters, vol. 2, pp. 34, 2006.
[41]
B. Yu, Y. Gao, and H. Li, “Fabrication and optical characterization of poly (2,5-di-n-butoxyphenylene) nanofibril arrays,” Journal of Applied Polymer Science, vol. 91, pp. 425 ,2004.
[42]
K. L. Lai, M. H. Hon, and I. C. Leu, “Fabrication of ordered nanoporous anodic alumina prepatterned by mold-assisted chemical etching,” Nanoscale Research Letters, vol. 6, pp. 157, 2011.
[43]
A. Nourmohammadi, S. J. Asadabadi, M. H. Yousefi, and M. Ghasemzadeh, “Photoluminescence mission of nanoporous anodic aluminum oxide films prepared in phosphoric acid,” Nanoscale Research Letters, vol. 7, pp. 689, 2012.
[44]
C. G. Kuo, and C. C. Chen, “Technique for self-Assembly of Tin nano-particles on anodic aluminum oxide (AAO) templates,” Materials Transactions, vol. 50, pp. 1102, 2009.
[45]
W. Chen, J. S. Wu, and X. H. Xia, “Porous anodic alumina with continuously manipulated pore/cell size,” ACS Nano. Vol. 2, pp. 959, 2008.
[46]
O. Sanz, F. J. Echave, J. A. Odriozola, and M. Montes, “Aluminum anodization in oxalic acid: controlling the texture of Al2O3/Al monoliths for catalytic applications,” Industrial & Engineering Chemistry Research, vol. 50, pp. 2117, 2011.
[47]
A. Belwalkara, E. Grasinga, W. V. Geertruyden, Z. Huang, and W. Z. Misioleka, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes,” Journal of Membrane Science, vol. 319, pp. 192, 2008.
[48]
S. K. Hwang, S. H. Jeong, H. Y. Hwang, O. J. Lee, and K. H. Le, “Fabrication of highly ordered pore array in anodic aluminum oxide,” Korean Journal of Chemical Engineering, vol. 19, pp. 467473, 2002.
[49]
A. P. Li, F. Mulle, A. Birner, K. Nielsch, and U.Gosele, ”Fabrication and microstructuring of hexagonally ordered two- dimensional nanopore arrays in anodic alumina,” Advanced Materials, vol. 11, pp.483-487, 1999.
[50]
陳君閣, "以陽極處理法製備奈米孔洞陣列光電元件," 博士論文, 光電科學與工程學系, 國立中央大學, 2014.
[51]
C. Y. Liu, A. Datta, and Y. L. Wang,“Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” A Applied Physics Letters, vol. 78, pp. 120, 2001.
[52]
S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, "Fabrication of 3D photonic crystals by autocloning and its applications," Electronics and Communications in Japan Part Ii-Electronics, vol. 82, pp. 43-52, 1999.
[53]
葉渝雯, "自我複製結構膜光學性質之研究," 碩士論文, 光電科學與工程學系, 國立中央大學, 2008.
[54] Sato T., Ohtera Y., Ishino N., Miura K., and Kawakami S., " In-plane light propagation in Ta2O5/SiO2 autocloned photonic crystals," IEEE Journal of quantum electronics, vol. 38, pp. 7, 2002.
[55]
T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Optical and Quantum Electronics, vol. 34, pp. 63-70 ,2002.
[56]
Ohtera Y., Onuki T., Inoue Y., Kawakami S., "Multichannel photonic crystal wavelength filter array for near-infrared wavelengths," Journal of lightwave technology, vol. 25, pp. 2, 2007.
[57]
Kim S., Nordin G.P.,Cai J.,Jiang J., "Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure, " Optics Letters, vol. 28, pp. 2384-2386, 2003.