| 研究生: |
陳宏融 Hung-Jung Chen |
|---|---|
| 論文名稱: |
整合MR影像與CT影像方位校準及C-arm影像輔助脊椎手術的路徑規劃與導引 |
| 指導教授: |
曾清秀
Ching-Shiow Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 內視鏡手術 、脊椎手術 、內視鏡夾持器 、影像註冊 、CT 、MRI 、C-arm |
| 外文關鍵詞: | 3D endoscopic surgery, endoscope holder, surgical guide, CT |
| 相關次數: | 點閱:26 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脊椎減壓、固定、融合術邁向微創手術方式後,其需反覆拍攝 X-ray 影像以確
認手術器械位置與需醫師豐富臨床經驗等的缺點使手術導航系統因此而發展。眾
多導航系統中,基於 2D C-arm 影像的導航系統設備成本較低,但提供路徑規劃的
2D C-arm 影像資訊較不足;而基於 3D C-arm 或 O-arm 影像的導航系統提供 3D 影
像資訊但設備成本較高。這些單純使用術中 C-arm 影像的導航系統並未整合含有
大量軟組織資訊可供醫師用於診斷與精細規劃手術路徑的 MR 影像。
本研究將 2D C-arm 影像導航系統與 CT 影像結合,達成了設備成本低又保有
三維影像路徑規劃的優點。而 MR 與 CT 影像的註冊,可使醫師在術前規劃比純以
CT 影像規劃更精細的內視鏡減壓手術的路徑與固定/融合手術的螺釘路徑,減少手
術時間與不預期的失誤。本研究使用曲面對應法作為 MR 與 CT 影像的主要方位校
準方法。應用演算法在 MR 影像中搜尋脊髓區域並建立其三維模型,並尋找棘突
與椎孔上緣輪廓點作為與 CT 影像重建的骨頭輪廓曲面註冊用。影像註冊採用疊代
最近點法配合初始特徵點對應,使曲面對應有效收斂。術中 CT 與 C-arm 影像的對
位是依據醫師正常拍攝 C-arm 影像的方式由 CT 影像產生與 C-arm 影像相似的
DRR 影像,並提供輔助線比對校準,以將在 CT 影像上規劃之手術路徑輕易的對
應至 C-arm 影像上。本研究另開發可於減壓手術中使用的內視鏡夾持器,其具備
讓內視鏡輕易地繞空間中固定點旋轉角度、以及固定內視鏡的功能,使醫師不須持
續以手握持內視鏡。
以附有標記物的假體進行 MR 與 CT 影像註冊的準確度驗證實驗。實驗結果顯
示若初對正之位移誤差在±4mm 以內或旋轉誤差 ±1 度以內,都可讓疊代最近點法
收斂,而對位的收斂結果皆達臨床使用要求的 2mm 以內。又 CT 影像產生的 DRR
影像與 C-arm 影像比對部份,十字輔助線能在拍攝 C-arm 時提供有效的對照用以
協助醫師調整 X-ray 投影位置與角度,使術前規劃之手術路徑能對應到 C-arm 影
像上並由導航系統進行導引定位用。
The procedures of spinal decompression, fixation, and fusion are moving towards
minimally invasive surgery. The need to repeatedly take X-ray images to confirm the
positions of surgical instruments and the need for surgeons rich clinical experience has
led to the development of surgical navigation systems. Among many navigation systems,
the equipment cost of the navigation system based on 2D C-arm image is lower, but the
2D C-arm image information to provide path planning is insufficient. The navigation
system based on 3D C-arm or O-arm image provides 3D image information, but the
equipment costs higher. These navigation systems that only use intraoperative C-arm
images do not integrate MR images that contain a large amount of soft tissue information
for physicians to use for diagnosis and precise surgical path planning.
This research integrates the 2D C-arm image navigation system with CT images to
achieve the advantages of low cost of equipment and 3D image path planning. In addition,
the registration of MR and CT images enables the surgeon to plan more precise
endoscopic path for spinal decompression and screw insertion path for spinal fusion than
that provided only by CT images, so that it will reduce the operation time and unexpected
trouble or mistakes during the operation. In this study, the curved surface mapping method
is used as the main registration method for MR and CT images. Use algorithm to search
for spinal cord area in MR images and generate its three-dimensional model, and to find
the contour points of the spinous process and the upper edge of the vertebral foramina as
the registration points for the registration of the bone contour surface reconstructed from
the CT images. The registration between MRI and CT images uses the iterative closest
point method with initial feature points registration to speed up the convergence
effectively. Intraoperative alignment of CT and C-arm images is based on the way
surgeons normally take C-arm images. The DRR images similar to C-arm images are
generated from CT images, and auxiliary line for comparison and calibration is also
provided for surgeons to plan on CT images. The surgical path on the DRR (Digitally
Reconstructed Radiography) is therefore easily mapped to the C-arm image. In addition,
an endoscope holder for decompression surgery has also been developed. It is easy to
adjust the angular direction of the endoscope about a fixed point in space and hold the
endoscope, so that the surgeon does not need to hold the endoscope manually.
The accuracy of MR and CT image registration was evaluated experimentally using
marker-attached prostheses. The experimental results show that if the displacement or
angular errors of initial alignment are within ±4mm or within ±1 degree respectively, the
registration using iterative closest point method will converge with an error within 2mm,
which satisfies the clinic need of spine surgery. In addition, the DRR image generated by
the CT image is compared with the C-arm image. The cross auxiliary line can provide an
effective comparison to help the surgeon adjust the X-ray projection position and angle,
so as to the planned path prior to the operation can be mapped to the C-arm image and
used by the navigation system for guidance and positioning.
[1] Stryker. "SpineMap® 3D Software."
https://neurosurgical.stryker.com/products/spinemap-3d-software/ (accessed).
[2] Medtronic. "Mazor X." https://www.medtronic.com/us-en/healthcareprofessionals/products/spinal-orthopaedic/spine-robotics/mazor-x-stealthedition.html (accessed).
[3] BrainLab. "Airo Mobile Intraoperative CT." https://www.brainlab.com/surgeryproducts/overview-platform-products/intraoperative-ct/ (accessed).
[4] 李訓銘, "電腦輔助骨科手術用規劃及導引系統," 碩士論文, 機械工程學系,
國立中央大學, 2000.
[5] 陳忠昊, "脊椎手術用 3D C-arm 影像輔助機械臂導引系統之研發," 碩士論文,
機械工程學系, 國立中央大學, 2020.
[6] P. J. Besl and N. D. McKay, "Method for registration of 3-D shapes," in Sensor
fusion IV: control paradigms and data structures, 1992, vol. 1611: International
Society for Optics and Photonics, pp. 586-606.
[7] Y. Liu, Z. Song, and M. Wang, "A new robust markerless method for automatic
image-to-patient registration in image-guided neurosurgery system," Computer
Assisted Surgery, vol. 22, no. sup1, pp. 319-325, 2017.
[8] Y. Dong, C. Zhang, D. Ji, M. Wang, and Z. Song, "Regional-surface-based
registration for image-guided neurosurgery: effects of scan modes on registration
accuracy," International journal of computer assisted radiology and surgery, vol.
14, no. 8, pp. 1303-1315, 2019.
[9] X. Zhang, J. Wang, T. Wang, X. Ji, Y. Shen, Z. Sun, and X. Zhang, "A markerless
automatic deformable registration framework for augmented reality navigation of
laparoscopy partial nephrectomy," International journal of computer assisted
radiology and surgery, vol. 14, no. 8, pp. 1285-1294, 2019.
[10] ZEISS. "KINEVO 900." https://www.zeiss.com/meditec/int/home.html
(accessed).
[11] C. Westbrook and J. Talbot, MRI in Practice. John Wiley & Sons, 2018.
[12] W. E. Lorensen and H. E. Cline, "Marching cubes: A high resolution 3D surface
construction algorithm," ACM siggraph computer graphics, vol. 21, no. 4, pp.
163-169, 1987.
[13] 吳典學, "脊椎手術用 2D C-arm 影像輔助機械臂導引定位系統之研發," 碩士
論文, 生醫科學與工程學系, 國立中央大學, 2017.
[14] 陳冠君, "整合EPnP及導引器械之C-arm影像輔助脊椎手術用導引系統," 碩
士論文, 機械工程學系, 國立中央大學, 2015.