| 研究生: |
何宜祐 Yi-You He |
|---|---|
| 論文名稱: |
抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究 Reduce the crystallization of Plasma-Enhanced Atomic Layer Deposition HfO2 thin film by insert interlayer |
| 指導教授: |
郭倩丞
Chien-Cheng Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 抑制薄膜結晶 、原子層沉積 |
| 外文關鍵詞: | Atomic Layer Deposition, Reduce the crystallization |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用電漿輔助原子層沉積法鍍製二氧化鉿(HfO2)單層膜,在低溫製程100ºC下使用水、純氧電漿、氧氣混合氬氣電漿等不同氧化方式,探討折射率(n)和消光係數(k)的趨勢來找出最佳參數,研究發現使用氧氬混合電漿,能夠增強介面化學反應且降低雜質,使消光係數(k)在波長550 nm下最低可達到1.6×10-4,分析在相同製程溫度下熱製程與電漿製程的結晶強度,也探討了在相同製程溫度條件下隨著薄膜厚度增加,薄膜的結晶強度變化。
由於原子層沉積技術在低溫100ºC下,使用電漿製程會比熱製程更容易使薄膜結晶,本論文研究出在HfO2薄膜中插入抑制層後成功降低薄膜結晶,過程中利用Macleod 軟體模擬,交叉驗證其方法的可行性,使用X光繞射儀分析HfO2薄膜,結晶強度成功從3126下降至110,降低了高達96%,用原子力顯微鏡分析薄膜表面,其薄膜粗糙度從1.94 nm下降至0.434 nm有著大幅度的進步,並使用掃描式電子顯微鏡觀察薄膜表面結晶情形,有著明顯表面平坦化的趨勢。
In this thesis, plasma-enhanced atomic layer deposition (PE-ALD) was used to deposit a single layer of hafnium dioxide (HfO2) onto the wafer substrate. ALD makes use of various oxidation methods using water, pure oxygen plasma, and oxygen mixed argon plasma under a low-temperature 100ºC process. One must explore the trend of refractive index (n) and extinction coefficient (k) to find the best possible parameters of the single layer in question. The study found the use of oxygen mixed argon hybrid plasma, can enhance interface chemical reaction and reduce impurities. The lowest extinction coefficient (k) can reach 1.6×10-4 at a wavelength of 550 nm. Following this, the crystal strength of the thermal process and the plasma process at the same process temperature was analyzed. In addition, the change of the film crystallization strength with the increase of the film thickness under the same process temperature was also discussed.
Since ALD technology uses plasma processes under low-temperature 100ºC processes, it is easier to crystallize thin film than the thermal process. This thesis studies the reduction of film crystallization by inserting a suppressor layer in the HfO2 film. Using Macleod software to simulate the process, the feasibility of the method was confirmed. An X-ray diffractometer was used to analyze HfO2 film. The crystal strength of HfO2 film was successfully reduced from 3126 to 151, which decreased the crystal strength of HfO2 film by 96%. The atomic force microscope (AFM) analysis of the film surface showed that the film roughness has decreased from 1.94 nm to 0.434 nm. Moreover, whilst using the Scanning Electron Microscope (SEM) for film surface observation, it resulted in a surface flattening trend. This significant result is the verification of the method's feasibility.
[1] Sensing 5.0趨勢下之感測技術應用方向
Available: https://reurl.cc/qgZdNN
[2] 3D感測技術發展與應用趨勢/大和有話說
Available: https://reurl.cc/a9kM8D
[3] 詳解黑科技「結構光」,第三種測量方法
Available: https://kknews.cc/zh-tw/tech/r94oq34.html
[4] 微陣列透鏡
Available: https://reurl.cc/gW0n34
[5] Brad Aitchison, Michael J. Cumbo. “Optical Design and Fabrication.” Deposition and fabrication, 310.1210 (2017).
[6] Dr. Wolfgang Ebert. “Atomic Layer Deposition for Coating of Complex 3D Optics.” Optik & Photonik, 12(3), 42–45. (2017).
[7] Kristin Pfeiffer, Ulrike Schulz. “Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition Coatings.” Coatings, 7(8), 118. (2017).
[8] 精密光學工程技術發展
Available: https://reurl.cc/vqmDWN
[9] 俊尚科技-CVD鍍膜技術
Available: https://www.junsun.com.tw/zh/technology/cvd#mpcvd
[10] J. Vac. Sci. Technol. “History of atomic layer deposition and its relationship with the American Vacuum Society.” Surfaces, and Films, 31(5), 050818. (2013).
[11] Leskelä, M., & Ritala, M. “Atomic layer deposition (ALD): from precursors to thin film structures.” Thin Solid Films, 409(1), 138–146. (2002).
[12] Peter M. Martin. “Atomic Layer Deposition. Handbook of Deposition Technologies for Films and Coatings.” Published by Elsevier Inc, 364–91. (2010).
[13] Kim, H. “Characteristics and applications of plasma enhanced-atomic layer deposition.” Thin Solid Films, 519(20), 6639–6644. (2011).
[14] Seppälä, Sanni. “Atomic Layer Deposition of Zirconium Oxide and Rare Earth Oxides from Heteroleptic Precursors.” Faculty of Science, University of Helsinki, Doctoral dissertation, Finland (2019).
[15] Gregory N. Parsons,Steven M. George and Mato Knez. “Progress and future directions for atomic layer deposition and ALD-based chemistry.” MRS Bulletin, 36(11), 865–871. (2011).
[16] 國家實驗研究院-科普講堂
Available: https://reurl.cc/EnX7X1
[17] Kariniemi M., Niinistö J., Vehkamäki M., Ritala M. “Conformality of remote plasma-enhanced atomic layer deposition processes.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 30(1), 01A115. (2012).
[18] ALD設備與產業展望
Available: https://reurl.cc/6aL2NV
[19] J. Vac. Sci. Technol. “Status and prospects of plasma-assisted atomic layer deposition.” Journal of Vacuum Science & Technology A, 37(3), 030902. (2019).
[20] 李正中,¬「薄膜光學與鍍膜技術(第八版)」,藝軒圖書出版社 (2016).
[21] I. Langmuir. “Oscillations in ionized gases” Proceedings of the National Academy of Sciences of the United States of America, vol. 14, 627. (1928).
[22] Kyoung-Mun Kim, Jin Sub Jang. “Optical and Electrical Properties of HfO2 Thin Films Deposited at Low-Temperature Using Plasma-Enhanced Atomic Layer.” Materials, 13(9), 2008. (2020).
[23] Wei, Y., Xu, Q., Wang, Z., Liu, Z., Pan, F., Zhang, Q., & Wang, J. “Growth properties and optical properties for HfO2 thin films deposited by atomic layer deposition.” Journal of Alloys and Compounds, 735, 1422–1426. (2017).
[24] Jeon H and Won Y. “The reaction pathways of the oxygen plasma pulse in the hafnium oxide atomic layer deposition process Appl.” Applied Physics Letters, 93(12), 124104. (2008).
[25] Kitajima T, Nakano T and Makabe T, “Increased O(D1) metastable density in highly Ar-diluted oxygen plasmas Appl.” Applied Physics Letters, 88(9). (2006).
[26] Kitajima T, Nakano T and Makabe T. “Increased O(D1) metastable flux with Ar and Kr diluted oxygen plasmas and improved film properties of grown SiO2 film.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 26(5), 1308–1313. (2008).
[27] Takeshi Kitajima, Hidemichi Minowa and Toshiki Nakano, “Enhanced interfacial reaction of precursor and low temperature substrate in HfO2 atomic layer deposition with highly Ar diluted O2 plasma.” Published by IOP Publishing LtdJournal of Physics Communications, 4(9), 095013. (2020).
[28] SEN research 4.0
Available: https://reurl.cc/mLZnlV
[29] X-ray photoelectron spectroscopy.
Available: https://zh.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
[30] 原子力顯微鏡原理
Available: http://web1.knvs.tp.edu.tw/AFM/ch4.htm
[31] G E Testoni, W Chiappim, R S Pessoa, M A Fraga. “Influence of the Al2O3 partial-monolayer number on the crystallization mechanism of TiO2 in ALD TiO2/Al2O3 nanolaminates and its impact on the material properties.” Journal of Physics D: Applied Physics, 49(37), 375301. (2016).
[32] Zhigang Xiao, Kim Kisslinger, “Comparison of Hafnium Dioxide and Zirconium Dioxide Grown by Plasma-Enhanced Atomic Layer Deposition for the Application of Electronic Materials.” Crystals, 10(2), 136 (2020).